Abstract:
Provided is a method of producing a structure comprising a film including a nanohole on a substrate, the nanoholes passing through the film from the surface of the film to the surface of the substrate, wherein said method comprising the steps of (i) forming a film on the substrate, (ii) anodizing the film, wherein in step (ii) the anodization is conducted while monitoring an anodization current and the anodization of the film terminates when a reduction in said anodization current from a steady-state value is detected.
Abstract:
Provided is a structure comprising a substrate, and a film formed on the substrate, wherein the film has a nanohole,and wherein the nanohole passes through the film from a surface of the substrate to a surface of the film opposite to the substrate, the nanohole is substantially perpendicular to the substrate, and the nanohole has a first diameter at a surface of the film opposite to the substrate and a second diameter at a surface of the substrate, wherein the nanohole has a constriction at a location between the surface of the film opposite to the substrate and the surface of the substrate, the constriction has a diameter smaller than the first and second diameters.
Abstract:
The invention relates to providing a columnar structure having a uniform shape and excellent heat resistance and mechanical strength that is formed on a substrate of silicon, a method of preparing the structure, and a DNA separation device prepared by the method. The structure has, on a substrate (11) made of silicon, columns (12) the main surface of which is covered with a thermally oxidized film (16). The columns (12) are made of the thermally oxidized film (16) only or of the thermally oxidized film (16) and silicon. The thermally oxidized film formed on the columns (12) is connected to those formed on the surface or inside of the substrate (11).
Abstract:
The invention relates to a method for selective etching of SiC, the etching being carried out by applying a positive potential to a layer (3; 8) of p-type SiC being in contact with an etching solution containing fluorine ions and having an oxidising effect on SiC. The invention also relates to a method for producing a SiC micro structure having free hanging parts (i.e. diaphragm, cantilever or beam) on a SiC-substrate, a method for producing a MEMS device of SiC having a free hanging structure, and a method for producing a piezo-resistive pressure sensor comprising the step of applying a positive potential to a layer (8) of p-type SiC being in contact with an etching solution containing fluorine ions and having an oxidising effect on SiC.
Abstract:
An inertia force sensor having a mass body (11) which moves when force is applied to the sensor, at least one holding beam (12) for holding the mass body (11), and an anchor portion (13) for fixing an end portion of the holding beam (12), the sensor being designed to detect inertia force, which acts on the mass body (11), on the basis of a movement of the mass body (11). The sensor is characterized in that the mass body (11) is composed of a free standing structure (9) which is formed by removing an inner part of a silicon substrate (1) therefrom by means of an etching process within a single step, and the anchor portion (13) is composed of at least a part of a main body of the silicon substrate. Because the inertia force sensor is composed of single crystal silicon, its mechanical properties and reliability may be highly improved.
Abstract:
The invention provides a nanostructure including an anodized film including nanoholes. The anodized film is formed on a substrate having a surface including at least one material selected from the group consisting of semiconductors, noble metals, Mn, Fe, Co, Ni, Cu and carbon. The nanoholes are cut completely through the anodized film from the surface of the anodized film to the surface of the substrate. The nanoholes have a first diameter at the surface of the anodized film and a second diameter at the surface of the substrate. The nanoholes are characterized in that either a constriction exists at a location between the surface of the anodized film and the surface of the substrate, or the second diameter is greater than the first diameter.
Abstract:
A method for producing a semiconductor device is capable of solving problems related to dicing a metal thin film used for electrochemical etching. According to the method, an n type epitaxial thin layer (36) is formed on a p type single-crystal silicon wafer (35). An n + type diffusion layer (38) is formed in a scribe line area on the epitaxial layer (36). An n + type diffusion layer (39) is formed in an area of the epitaxial layer (36) which corresponds to the predetermined part of the wafter (35). Aluminum film (40, 41) is formed over the diffusion layers (38, 39), respectively. The aluminum film (40) has a clearance (65) for passing a dicing blade (66). Predetermined parts of the wafer (35) are electrochemically etched by supplying electricity through the aluminum film (40), the diffusion layers (38) and (39), to leave predetermined parts of the epitaxial layer (36). The wafer (35) is diced into chips along the scribe line area. Each of the chips forms the semiconductor device. The electrochemical etching of the wafer (35) is carried out after the formation of the aluminum film (40, 41), by immersing the wafer (35) in a KOH aqueous solution (76) and by supplying electricity through the aluminum film (40). The electrochemical etching is terminated at an inflection point where an etching current inflects to a constant level from a peak level. During the electrochemical etching, the diffusion layer (39) reduces horizontal resistance in the epitaxial layer (36), so that the etched parts receive a sufficient potential to perform the etching.