Abstract:
The invention relates to a procedure for determining an identification of a sample of material, or its properties. Electromagnetic radiation from a radiation source (1) is reflected or transmitted through the sample. The radiation from the sample is collected and analyzed over several channels (7, 7', 7"), which modulate the radiation with a spectral transmission function which is unique for each channel. The modulated radiation is transmitted to one or several detectors (9, 9', 9") which produce output signals which are further electronically processed. The spectral range of each of the individual channels is common to all of the channels. Within the common range the channels are provided with different spectral transmission functions (7, 7',7") which are optimally chosen for a given application.
Abstract:
The invention is a lamp quality judgement apparatus and judgement method which judge quality by detecting the state of gas sealed in an electric lamp such as a gas-filled incandescent lamp, etc. in which gas with an Argon-Nitrogen mixture as its main component is sealed. More particularly, a lamp in which such gas is sealed is classified as a good product or as a bad product by imposing a high DC voltage or a high AC or pulsed voltage with a comparatively low frequency of 1 kHz or less across the lamp's valve and filament coil to produce discharge and emission, in the lamp, of a light in a wavelength region in the vicinity of 560 nm and judging the radiation state in this 560 nm light spectrum, i.e., the state of discharge in the lamp. The means employed for detecting the light spectrum radiation state include means for judging lamp quality by monitoring the temporal response characteristic in the light spectrum in the 560 nm wavelength region and means for effecting accurate judgement of lamps regardless of variations in the state of discharge in lamps by detecting the difference in intensity of the light spectra of two wavelength regions which are the light spectrum of a 560 nm wavelength region and a light spectrum of a wavelength region other than the 560 nm wavelength region.
Abstract:
The slit assembly of the present spectrometer comprises a liquid crystal cell. The electrodes of the cell are selectively actuated for producing a pattern of slits appropriate to the spectral lines of interest in the spectrum derived from the substance under analysis.
Abstract:
Selected apertures or slits of a set or array are located at the intermediate slit position of an asymmetrical zero dispersion monochromator for use in correlation spectroscopy.
Abstract:
The present disclosure relates to spectrometry. A method is disclosed for detecting nitric oxide (NO) without first converting it to nitrogen dioxide (NO2) by determining the intensity of a spectral signature in the range between 2,259 and 2,269 Angstroms. Apparatus is provided which, in one form, utilizes an output shutter arrangement having a plurality of reciprocating vanes operated at mutually exclusive frequencies for passing regions of absorption radiation and continuum radiation. Circuit means is provided for distinguishing the signals derived at the various frequencies to determine the relative amount of particular material in a sample. In another form of the invention, an output chopper is provided having at least three slit apertures, the center aperture being adapted to pass only radiation at an absorptive wavelength and the two outer apertures being adapted to pass radiation in the continuum. A vane is adapted to reciprocate between a first position wherein the chopper passes only radiation through the center aperture and a second position wherein the chopper passes only radiation through the two outer apertures. The area of each of the two outer apertures is preferably one-half the area of the center aperture. A detector viewing radiation passed by the chopper will average the radiation received from the two outer apertures. In yet another aspect of the invention, a window assembly is provided so that the spectrometer may be used as a a stack monitor, the window assembly having a slidable window which may be removed for cleaning purposes.
Abstract:
A light wavelength measurement method of measuring a wavelength of target light includes: receiving target light on a second dispersion device that disperses the target light into a plurality of second beams which reach a plurality of positions corresponding to the wavelength of the target light (S106, S202); and measuring the wavelength of the target light, by using the plurality of the second beams as a vernier scale for measuring the wavelength of the target light within a wavelength range specified by a main scale (S108, S204).