Abstract:
An electron emitter (10A) includes a lower electrode (16) formed on a glass substrate (11), an emitter section (12) made of dielectric film formed on the lower electrode (16), and an upper electrode (14) formed on the emitter section (12). A drive voltage (Va) for electron emission is applied between the upper electrode (14) and the lower electrode (16). At least the upper electrode (14) has a plurality of through regions (20) through which the emitter section (12) is exposed. The upper electrode (14) has a surface which faces the emitter section (12) in peripheral portions of the through regions (20) and which is spaced from the emitter section (12).
Abstract:
A microdevice (10) has an electron emitter (14) including a memory (18) for accumulating electric charges corresponding to an input voltage (Vi), for emitting electrons corresponding to the electric charges accumulated in said memory (18); and an amplifier (16) connected to a power supply (22) and including a collector electrode (20) for capturing the electrons emitted from the electron emitter (14). The atmosphere between at least the electron emitter (14) and the collector electrode (20) is a vacuum. When the electrons emitted from the electron emitter (14) are captured by the collector electrode (20) of the amplifier (16), a collector current (Ic) flows between the collector electrode (20) and the electron emitter (14) to amplify the input voltage (Vi).
Abstract:
A display device includes a backside and a front-side substrates facing each other with a vacuum space therebetween; and a plurality of electron emission sites provided on the backside substrate. Each electron emission sites includes a bottom electrode formed on a surface of the backside substrate proximate to the vacuum space, an insulator layer formed over the bottom electrode, and a top electrode formed on the insulator layer and arranged individually apart from each other and facing the vacuum space. The display device also includes a plurality of bus electrodes for electrically connecting the neighboring top electrodes; and insulating protective films each provided between the bus electrode and the insulator layer and between the bus electrode and the backside substrate.
Abstract:
An array of field emission electron sources and a method of preparing the array which discharges electrons from desired regions of a surface electrode of field emission electron sources. The field emission electron source 10 comprises an electrically conductive substrate of p-type silicon substrate 1; n-type regions 8 of stripes of diffusion layers on one of principal surfaces of the p-type silicon substrate, strong electric field drift layers 6 formed on the n-type regions 8 which is made of oxidized porous poly-silicon for drifting electrons injected from the n-type region 8; poly-silicon layers 3 between the strong field drift layers 6; surface electrodes 7 of the stripes of thin conductive film formed in a manner to cross over the stripes of the strong field drift layer 6 and the poly-silicon layers 3. By selecting a pair of the n-type regions 8 and the surface electrodes 7 and thereby making electron emitted from the crossing points due to combination of the surface electrode 7 to be electrically applied and the n-type region 8 to be electrically applied, electrons can be discharged from desired regions of the surface electrodes 7.
Abstract:
글라스 기판, 세라믹 기판 등의 절연성 기판으로 이루어진 기판(1)의 한 쪽 주표면에 층형상의 도전성 탄화물층으로 이루어진 하부전극(2)이 형성되어 있다. 하부전극(2) 위에, 도프되지 않은 다결정 실리콘층(3)이 형성되어 있다. 다결정 실리콘층(3) 위에, 산화된 다공질다결정 실리콘층으로 이루어진 전자통과층(6)이 형성되어 있다. 전자통과층(6)은 다결정 실리콘과 이 다결정 실리콘의 입계(粒界) 부근에 존재하는 다수의 나노 결정 실리콘이 혼재하는 복합 나노 결정층으로 이루어진다. 하부전극(2)과 표면전극(7) 사이에, 표면전극(7)이 고전위가 되도록 전압이 인가될 때, 전자 e-가 전자통과층(6)내를 하부전극(2)에서 표면전극(7)을 향해 통과하고, 표면전극(7)을 통해 외부로 방출된다.
Abstract:
PURPOSE: A display using hot electron type electron sources is provided to suppress a voltage drop amount produced in a scan line below an allowable range and to obtain a high quality image without poor brightness uniformity when a screen size is increased. CONSTITUTION: A display includes a first substrate, frame members and spacer members, a second substrate having phosphor layers, and a display device in which a space surrounded by the first substrate, the frame members and the second substrate is maintained in a vacuum atmosphere. The first substrate as a hot electron type electron source having a bottom electrode(11), an electron accelerator of an insulator thin film and a top electrode(13) sequentially stacked onto a substrate(10), further includes a plurality of first electrodes applying a driving voltage to the bottom electrode of the electron source device in a row or column direction of a plurality of electron source devices emitting an electron from the surface of the top electrode when applying a positive voltage to the top electrode arrayed in a matrix form and a plurality of second electrodes applying a driving voltage to the top electrode of the electron source device in the row or column direction of the plurality of electron source devices and having a sheet resistance lower than that of the first electrodes. The first electrodes are a data line and the second electrodes are a scan line to display image information by a line sequential scanning scheme.
Abstract:
PURPOSE: A field emission-type electron source is provided to suppress deterioration of electron emission characteristics and achieve enhanced thermal resistance. CONSTITUTION: A field emission-type electron source(10) comprises a lower electrode(2), an electron transit layer(6) formed on the lower electrode and composed of a composite nanocrystal layer including polycrystalline silicon and a number of nanocrystalline silicon residing adjacent to a grain boundary of the polycrystalline silicon, and a surface electrode(7) formed on the electron transit layer, in which the field emission-type electron source is adapted to allow an electron passing through the electron transit layer to be emitted through the surface electrode, wherein at least a portion of the surface electrode is made of layer-structured conductive carbide or layer-structured conductive nitride.
Abstract:
전계방사형 전자원(10)에서, 강전계 드리프트층(6)과 금박막으로구성되는 표면전극(7)이 n형 실리콘기판(1)상에 형성된다. 오믹전극(2)이 n형 실리콘기판(1)의 배면상에 형성된다. 표면전극(7)이 오믹전극(2)에 대하여 양의 전위가 되도록 직류전압이 인가 된다. 이러한 방식으로 오믹전극(2)으로 부터 강전계 트리프트층(6)으로 주입된 전자가 n형 실리콘기판(1)을 통하여 강전계 드리프트층(6)으로 드리프트하고, 표면전극(7)을 경유하여 외측으로 방출된다. 강전계 드리프트층(6)은 강전계 드리프트층(6)을 구성하는 반도체층의 부분적으로 형성된 나노-미터 오더의 다수의 반도체 나노결정(63); 그리고 각 반도체 나노결정(63)의 표면상에 각각 형성되고 전자 터널링 현상이 일어나는 정도의 막두께를 각각 가지는 다수의 절연막(64)을 가진다. 전계방사형 전자원, 반도체 나노결정, 전자 터널링 현상
Abstract:
전계방사형 전자원(10)에서, 강전계 드리프트층(6)과 금박막으로구성되는 표면전극(7)이 n형 실리콘기판(1)상에 형성된다. 오믹전극(2)이 n형 실리콘기판(1)의 배면상에 형성된다. 표면전극(7)이 오믹전극(2)에 대하여 양의 전위가 되도록 직류전압이 인가 된다. 이러한 방식으로 오믹전극(2)으로 부터 강전계 트리프트층(6)으로 주입된 전자가 n형 실리콘기판(6)을 통하여 강전계 드리프트층(6)으로 드리프트하고, 표면전극(7)을 경유하여 외측으로 방출된다. 강전계 드리프트층(6)은 강전계 드리프트층(6)을 구성하는 반도체층의 부분적으로 형성된 나노-미터 오더의 다수의 반도체 나노결정(63); 그리고 각 반도체 나노결정(63)의 표면상에 각각 형성되고 전자 터널링 현상이 일어나는 정도의 막두계를 각각 가지는 다수의 절연막(64)을 가진다.
Abstract:
PURPOSE: An electron source is provided to restrain electric currents of a diode and to enhance an electron emitting efficiency by forming a layer having consecutively changing porous degrees. CONSTITUTION: A main surface of an n-type silicon substrate(101) is formed with a strong electric field drift part(106), and a surface electrode(107) is formed on the strong electric field drift part(106) with a gold thin film. An ohmic contact(107) is formed on the rear side of the n-type silicon substrate(101). The surface electrode(107) is disposed in a vacuum state, and the surface electrode(107) has a positive pole over the ohmic electrode(102) to apply a direct voltage. Electrons injected in the n-type silicon substrate(101) drifts the strong drift part(106) to be emitted through the surface electrode(107).