Abstract:
A motor vehicle system includes a motor vehicle including an aircraft landing portion, and an actively propelled unmanned aircraft configured to be supported on the aircraft landing portion. The vehicle and aircraft are configured such that the vehicle can provide at least one of fuel and electrical energy to the aircraft while the aircraft is supported on the aircraft landing portion.
Abstract:
An unmanned aerial vehicle (UAV) housing apparatus comprising a mounting component configured to attach to a vehicle; a landing connection component configured to form a connection with the UAV that prevents detachment of the UAV and the UAV housing apparatus; and a cover 730 configured to at least partially enclose the UAV when the UAV is connected to the landing connection component.
Abstract:
A mobile unmanned aerial vehicle (UAV) infrastructure and management system, and related methods to facilitate operation of one or more unmanned aerial vehicles (UAVs) in one or more areas is disclosed.
Abstract:
A system and method for deploying a payload with an aerostat uses a mobile transporter for moving the system to a deployment site. Structurally, the system includes a base unit with a rotation head mounted thereon. An envelope container for holding a deflated aerostat is mounted on the rotation head and a rotation of the container on the rotation head positions the aerostat for optimal compliance with the existing wind condition. Also included in the system is an inflator that is mounted on the base unit to inflate the aerostat with a Helium gas. And, the system includes a tether control unit for maintaining a connection with the aerostat during its deployment, in-flight use, and recovery. Preferably, a deployment computer is used for a coordinated control of the rotation head, inflator and tether.
Abstract:
A control circuit dispatches towards a delivery zone a terrestrial vehicle that carries at least one airborne drone and at least one item to be delivered to a customer. When the terrestrial vehicle is in the delivery zone, the drone is dispatched to carry the item to the customer. By one approach the drone exits the terrestrial vehicle without bearing the item. The item can be automatically moved from within the terrestrial vehicle to a position such that the item is at least partially exposed external to the terrestrial vehicle. The airborne drone, subsequent to exiting the terrestrial vehicle, can engage the item in order to then deliver that item to the customer. By one approach the terrestrial vehicle includes one or more platforms that support one or more airborne drones and that can be moved from within the terrestrial vehicle to a deployed position external to the terrestrial vehicle.
Abstract:
The universal vehicle system is designed with a lifting body which is composed of a plurality of interconnected modules which are configured to form an aerodynamically viable contour of the lifting body which including a front central module, a rear module, and thrust vectoring modules displaceably connected to the front central module and operatively coupled to respective propulsive mechanisms. The thrust vectoring modules are controlled for dynamical displacement relative to the lifting body (in tilting and/or translating fashion) to direct and actuate the propulsive mechanism(s) as needed for safe and stable operation in various modes of operation and transitioning therebetween in air, water and terrain environments.
Abstract:
A base module may be used to receive and house one or more unmanned aerial vehicles (UAVs) via one or more cavities. The base module receives commands from a manager device and identifies a flight plan that allows a UAV to execute the received commands. The base module transfers the flight plan to the UAV and frees the UAV. Once the UAV returns, the base module once again receives it. The base module then receives sensor data from the UAV from one or more sensors onboard the UAV, and optionally receives additional information describing its flight and identifying success or failure of the flight plan. The base module transmits the sensor data and optionally the additional information to a storage medium locally or remotely accessible by the manager device.
Abstract:
An unmanned aerial vehicle according to the present invention includes a housing mounted on a vehicle and having an inner space, the housing provided with a launching unit, an unmanned aerial vehicle accommodated in the housing and configured to be launched from the housing when a driving state of the vehicle meets a preset condition, wing units mounted to the unmanned aerial vehicle and configured to allow the flight of the unmanned aerial vehicle in response to the launch from the housing, an output unit disposed on the unmanned aerial vehicle, and a controller configured to control the wing units to move the unmanned aerial vehicle to a position set based on information related to the driving state when the unmanned aerial vehicle is launched, and control the output unit to output warning information related to the driving state.
Abstract:
An asymmetric aircraft (1) and an aircraft (1) that can operate from small ships (8) and be stored in high density with three aircraft or more in one helicopter hangar (107) without needing a landing gear or wing fold. These aircraft slide into and out of the hangar on dollies (90) like circuit boards in a computer and are launched and recovered using a large towed parafoil (6).