Abstract:
First and second filter magazines (71, 72) in each of which plural filters having different transmission wavelengths from each other are arranged in a row are provided, and the first and second filter magazines (71, 72) are arranged next to each other in one direction. A light detection unit (73) in which plural photomultipliers of first and second photomultipliers (73a, 73b), each of which detects light that has passed through at least one of the filters included in the first and second filter magazines (71, 72), are arranged in the arrangement direction of the filters is provided, and the light detection unit (73) is placed in the one direction in such a manner to be parallel to the first and second filter magazines (71, 72). The apparatus is configured in such a manner that the first and second filter magazines (71, 72) and the light detection unit (73) are independently movable in the arrangement direction of the filters. The technical effect is to provide a light detection apparatus in which light having different wavelengths from each other is detectable by detectors corresponding to the wavelengths of the light respectively and also the size of the whole apparatus is reducible.
Abstract:
Various embodiments include systems and methods to provide selectable variable gain to signals in measurements using incident radiation. The selectable variable gain may be used to normalize signals modulated in measurements using incident radiation. The selectable variable gain may be attained using a number of different techniques or various combinations of these techniques. These techniques may include modulating a modulator having modulating elements in which at least one modulating element acts on incident radiation differently from another modulating element of the modulator, modulating the use of electronic components in electronic circuitry of a detector, modulating a source of radiation or combinations thereof. Additional apparatus, systems, and methods are disclosed.
Abstract:
Systems and methods for standardizing one or more fluorescence scanning instruments to a reference system by separating the effects of drift and normalization. In an embodiment, a drift image comprising an image of a drift reference slide is captured by a system to be standardized. A drift measurement is calculated using the drift image. A first normalization image comprising an image of a normalization slide is also captured by the system to be standardized. A reference normalization image, also comprising an image of the normalization slide, is captured by a reference system. The first normalization image is compared to the reference normalization image to determine a gamma value and offset value for the system to be standardized.
Abstract:
Fast focusing methods and devices for multi-spectral imaging are disclosed. The method comprising selecting one of a plurality of imaging channel as a reference channel, adjusting rotation positions of a stepper motor, calculating focus measures corresponding to all rotation positions of the stepper motor, and obtaining a first distribution curve; in each of the other imaging channels, selecting at least three rotation positions of the stepper motor, matching focus measures at the selected rotation positions with the first distribution curve to obtain a second distribution curve and a offset value between the first distribution curve and the second distribution curve, and calculating a clear focusing position of the imaging channel to be focused according to the offset value; performing a fine-tuning focusing, and thereby obtaining a more precise clear focusing position. A fast focusing for multi-spectral imaging and obtain clear multi-spectral images is obtained.
Abstract:
Es wird ein Spektrometer (10) zur Gasanalyse angegeben, das eine Messzelle (28) mit einem zu untersuchenden Gas (30), eine Lichtquelle (12) zum Aussenden von Licht (14) in die Messzelle (28) auf einem Lichtweg (16), eine Filteranordnung (22) mit einem Fabry-Pérot-Filter (24a-c) in dem Lichtweg (16), um durch das Transmissionsspektrum der Filteranordnung (22) Frequenzeigenschaften des Lichts (14) einzustellen, sowie einen Detektor (36, 38) aufweist, welcher die Absorption des Lichts (14) durch das Gas (30) in der Messzelle (28) misst. Dabei weist die Filteranordnung (22) mehrere hintereinander in dem Lichtweg (14) angeordnete Fabry-Pérot-Filter (24a-c) auf, und es ist eine Steuereinheit (44) für die Filteranordnung (22) vorgesehen, um das Transmissionsspektrum durch Verstellen mindestens eines der Fabry-Pérot-Filter (24a-c) zu verändern.
Abstract:
Optical computing devices are disclosed. One exemplary optical computing device (300) includes an electromagnetic radiation source (308) configured to optically interact with a sample (306) and at least two integrated computational elements (302, 304). The at least two integrated computational elements are configured to produce optically interacted light (314), and at least one of the at least two integrated computational elements is configured to be disassociated with a characteristic of the sample. The optical computing device further includes a first detector (316) arranged to receive the optically interacted light (314) from the at least two integrated computational elements and thereby generate a first signal corresponding to the characteristic of the sample.
Abstract:
A spectral camera having an objective lens, an array of lenses for producing optical copies of segments of the image, an array of filters for the different optical channels and having an interleaved spatial pattern, and a sensor array to detect the copies of the image segments is disclosed. Further, detected segment copies of spatially adjacent optical channels have different passbands and represent overlapping segments of the image, and detected segment copies of the same passband on spatially non-adjacent optical channels represent adjacent segments of the image which fit together. Having segments of the image copied can help enable better optical quality for a given cost. Having an interleaved pattern of the filter bands with overlapping segments enables each point of the image to be sensed at different bands to obtain the spectral output for many bands simultaneously to provide better temporal resolution.
Abstract:
The invention relates to an apparatus (12) for analyzing a target (14) in a sample (16), the target being capable of generating an emitting light. The apparatus comprises a detector (36), and a luminescence cartridge (200) comprising: an integrated read head (202), a driver (204) for moving the integrated read head (202), and an optical system (88-92, 212-218) for receiving emitting light from the target (14) and directing the emitting light from the target to the detector (36), wherein the cartridge is adapted to be removably engaged with the apparatus.
Abstract:
A filter wheel and a spectrometer including the filter wheel are disclosed. The filter wheel has a first support structure on which a first plurality of filters are mounted and a second support structure on which at least one filter is provided. A radiation source generates a radiation beam, and a beam splitter splits the radiation beam into a first detection path and a second detection path. The first plurality of filters are selectively movable into the first detection path. The at least one filter on the second support structure is arranged to be disposed in the second detection path. The spectrometer includes a first radiation detector that detects radiation that passes through the selected filter in the first detection path, and a second radiation detector that detects radiation passing through the filter in the second detection path.
Abstract:
A method of using multivariate optical computing in real-time to collect instantaneous data about a process stream includes installing an optical analysis system proximate a process line, the process line being configured to move a material past a window of the optical analysis system; illuminating a portion of the material with a light from the optical analysis system; directing the light carrying information about the portion through at least one multivariate optical element in the optical analysis system to produce an instantaneous measurement result about the portion; and continuously averaging the instantaneous measurement result over a period of time to determine an overall measurement signal of the material.