Abstract:
This invention describes an electrode structure formed from a plurality of individual electrodes, the individual electrodes being provided on separate submounts, the submounts being coupled to one another using kinematic ball mounts. Such a structure may be configured as a RF ion guide, mass filter or ion trap.
Abstract:
Optical beam modulation is accomplished with the aid of a semiconductive nanomembrane, such as a silicon nanomembrane. A photocathode modulates a beam of charged particles that flow between the carbon nanotube emitter and the anode. A light source, or other source of electromagnetic radiation, supplies electromagnetic radiation that modulates the beam of charged particles. The beam of charged particles may be electrons, ions, or other charged particles. The electromagnetic radiation penetrates a silicon dioxide layer to reach the nanomembrane and varies the amount of available charge carriers within the nanomembrane, thereby changing the resistance of the nanomembrane. As the resistance of the nanomembrane changes, the amount of current flowing through the beam may also change.
Abstract:
A method for making a field emission cathode structure includes forming a ballast layer over a column metal layer, forming a dielectric layer over the ballast layer, forming a line metal layer over the dielectric layer, forming a trench in the line metal layer and the dielectric layer, the trench extending to the ballast layer, and forming a sidewall spacer and a sidewall blade adjacent a sidewall of the trench, where the sidewall spacer is between the dielectric layer and the sidewall blade, and where the conformal spacer is recessed as compared to the sidewall blade such that a gap is present between the sidewall blade and the line metal layer.
Abstract:
An electron-emitting apparatus includes an emitter section made of a dielectric material, lower electrodes, upper electrodes having micro through holes, insulating layers disposed on the upper surface of the emitter section and between the adjacent upper electrodes, and focusing electrodes to which a predetermine potential is applied and which are disposed on the insulating layers. The electron-emitting apparatus applies a negative potential to the upper electrode to accumulate electrons in the emitter section and then applies a positive potential to the upper electrode. As a result, the polarization of the emitter section is reversed, and the accumulated electrons are emitted through the micro through holes in the upper electrodes by Coulomb repulsion. Owing to electric fields generated by the focusing electrodes, the emitted electrons travel in the upward direction of the upper electrode without spreading into a shape of a cone.
Abstract:
A laser beam temporally modulated in amplitude by a modulator and shaped into a long and narrow shape by a beam shaper is rotated around the optical axis of an image rotator inserted between the beam shaper and a substrate. Thus, the longitudinal direction of the laser beam having the long and narrow shape is rotated around the optical axis on the substrate. In order to perform annealing in a plurality of directions on the substrate, the laser beam shaped into the long and narrow shape is rotated on the substrate while a stage mounted with the substrate is moved only in two directions, that is, X- and Y-directions. In such a manner, the substrate can be scanned at a high speed with a continuous wave laser beam modulated temporally in amplitude and shaped into a long and narrow shape, without rotating the substrate. Thus, a semiconductor film can be annealed.
Abstract:
A method and apparatus for configuring a system that includes a plurality of interconnected components that each supports service parameters for communicating with other components in the system. A determination is made as to which components support service parameters that are compatible, and groups of components having compatible service parameters are identified. Adjacent components exchange information frames that identify their service parameters. Each component compares its service parameters with those of its adjacent components to determine whether they are compatible, updating its own service parameters if necessary. Any component that updates its service parameters issues another information frame. Thus, information frames are exchanged until it is determined which components support compatible service parameters, and what service parameters are to be used for communicating among those components. Additionally, a unique address is automatically assigned to every port in the system. Control over the entire range of available addresses is initially granted to a master component, which assigns unique addresses to its own ports, and then relinquishes control over ranges of addresses to other components which each becomes the managers of the addresses over which it is granted control. Each address manager assigns unique addresses to its ports, and if any extra addresses are available, relinquishes control over those extra addresses to another component.
Abstract:
Automatic machine methods and apparatus for determining which components of an I/O configuration are shared by other components of the configuration. The information can be obtained through the use of existing self-description facilities and unique identifiers. By noting which channel paths are used to obtain configuration-data records and examining the unique identifiers provided for each I/O items it can be determined which I/O devices are accessible through the same control unit, and which control units provide access to the same I/O device. Furthermore, by examining the unique identifiers provided, it can be determined which I/O subsystems and which control units or channel subsystems are accessible through the same dynamic switch and which dynamic switches provide access to the same I/O subsystem of channel subsystem. A programmable subchannel is provided to enable communication between a CEC and an electrically-connected I/O item not represented in the current I/O configuration description being used by the CEC. Without the programmed subchannel, the CEC cannot access any I/O item not represented in the CEC's current I/O configuration description.
Abstract:
A method of caching I/O requests permits caching in the MVS environment independent of the access method protocol used to initiate an I/O request (e.g., QSAM, VSAM, Media Manager). In addition, objects can be user-prioritized for residence in the cache.
Abstract:
A multimedia data processing apparatus for exchanging asynchronous transfer mode cells, each cell having a data portion and a header portion including destination information. Cells input through input lines are stored in locations in respective buffer memories selected by an input spatial switch. The locations in the buffer memories are addressable for reading and writing. Cells can be read from the buffer memories in a manner which is independent of the order in which the cells are written. Addresses of the stored cells in the buffer memories are managed for each of the destinations of the cells. In accordance with the managed addresses for each destination, the cells stored in the buffer memories are read and output, through an output line spatial switch to desired output lines connected to the buffer memories.
Abstract:
A dynamic switch connects a control unit to a plurality of channels on one or more processors, each processor controlled by an operating system. A logical path scheduler (LPS) within a master operating system in one of the processors contains a path control table which contains an entry for each control unit, system, and logical path combination--each entry indicating current path status (connected or disconnected), and time in that status. I/O requests within the systems for which no path currently exists are queued, and the LPS initiates connections and disconnections for the paths to equitably allocate the maximum number of simultaneous path connections allowed for the control unit, among more than that maximum number of contending channels.