Abstract:
A programmable processor and method for improving the performance of processors by expanding at least two source operands, or a source and a result operand, to a width greater than the width of either the general purpose register or the data path width. The present invention provides operands which are substantially larger than the data path width of the processor by using the contents of a general purpose register to specify a memory address at which a plurality of data path widths of data can be read or written, as well as the size and shape of the operand. In addition, several instructions and apparatus for implementing these instructions are described which obtain performance advantages if the operands are not limited to the width accessible number of general purpose registers.
Abstract:
A method of printing a sub-resolution device feature (16) having first and second edges spaced in close proximity to one another on a semiconductor substrate (20) includes the steps of first depositing a radiation-sensitive material on the substrate, then providing a first mask image segment (11) which corresponds to the first edge. The first mask image segment is then exposed with radiation (10) using an imaging tool (12) to produce a first pattern edge gradient (14). The first pattern edge gradient defines the first edge of the feature in the material. A second mask image segment (13) is then provided corresponding to the second feature edge. This second mask image segment is exposed to radiation (10) to produce a second pattern edge gradient (17) which defines the second edge of the feature. Once the radiation-sensitive material has been developed, the two-dimensional feature is reproduced on the substrate.
Abstract:
Système fermé et procédé de transformation d'un composé organique et/ou organométallique gazeux ou évaporable, en un solide inerte résistant à l'extraction de solvant, lequel est non toxique et peut être transformé par oxydation ou par d'autres procédés naturels en une matière toxique. Le procédé consiste en la transformation à basse température, de faible énergie, dans un système fermé, d'une matière organique et/ou organométallique, premièrement, par fragmentation de ladite matière en élément de base, puis par recombinaison dans un ordre quelconque desdits éléments sous la forme d'un revêtement ou d'un dépôt solide sur un substrat. Selon les modes de réalisation préférés de l'invention, on injecte la matière toxique et/ou potentiellement toxique sous forme d'une phase gazeuse dans une chambre (21) dans laquelle elle est soumise à une source d'énergie HF (35), formant ainsi un plasma contenu dans la chambre par un champ magnétique produit par des aimants (39 et 41). La chambre (21) ainsi que les autres composants du système de transformation (25, 23) sont maintenus sous pression négative à l'aide d'une pompe à vide (45). Cet agencement permet le transport de plasma d'un bout à l'autre du système jusqu'à une seconde chambre (23), dans laquelle les éléments du plasma peuvent se recombiner de manière aléatoire. La recombinaison de ces éléments sous forme de solide facilite la manipulation et empêche leur libération dans l'atmosphère ou dans une nappe souterraine. Les composés pouvant être soumis à ce procédé comprennent les hydrocarbures chlorurés, c'est-à-dire, le chlorure de méthylène, le tétrachlorure de carbone et les chlorofluorocarbones (c'est-à-dire les fréons).
Abstract:
Disclosed herein is a rigging component and method for connecting an array element in an array. The rigging component includes an elongate housing connectable to an array element; a connection link disposed within, and slidably extendable from, one end of the housing; a conduit extending into the housing from its opposite end, the conduit dimensioned to receive another connection link extending from an adjacent rigging component; and at least one latching device associated with the conduit for releasably retaining the other connection link within the conduit. Further disclosed is a system for connecting an array element in an array. The system comprises at least one rigging component having a connection link extendable to be locked at a single fixed distance and at least one rigging component having a connection link extendable to be locked at one of a plurality of fixed distances.
Abstract:
A control and distribution system provides electrical power distribution, audio signal distribution, and control signal distribution to one or more audio components, such as a powered loudspeaker element or a signal conditioning device such as a rack-mounted amplifier. Embodiments allow for the monitoring and/or control of parameters and/or components at or near the endpoint of the system. These parameters or components include low-level parameters associated with the external audio devices, as opposed to merely higher level parameters of the system. The control and distribution system may include an uninterrupted power source for providing power in an online or offline mode to selected components of the external audio devices. In some embodiments, online backup power is provided to low-power components without providing power to amplifiers within the external audio devices.
Abstract:
A general purpose, programmable media processor (12) for processing and transmitting a media data streams. The media processor (12) incorporates an execution unit (100) that maintains substantially peak data through out of media data streams. The execution unit (100) includes a dynamically partionable multi-precision arithmetic unit (102), programmable switch (104) and programmable extended mathematical element (106). A high bandwidth external interface (124) supplies media data streams at substantially peak rates to a general purpose register file (110) and the execution unit. A memory management unit, and instruction and data cache/buffers (118, 120) are provided. The general purpose, programmable media processor (12) is disposed in a network fabric consisting of fiber optic cable, coaxial cable and twisted pair wires to transmit, process and receive single or unified media data streams.
Abstract:
A general purpose, programmable media processor (12) for processing and transmitting a media data streams. The media processor (12) incorporates an execution unit (100) that maintains substantially peak data through out of media data streams. The execution unit (100) includes a dynamically partionable multi-precision arithmetic unit (102), programmable switch (104) and programmable extended mathematical element (106). A high bandwidth external interface (124) supplies media data streams at substantially peak rates to a general purpose register file (110) and the execution unit. A memory management unit, and instruction and data cache/buffers (118, 120) are provided. The general purpose, programmable media processor (12) is disposed in a network fabric consisting of fiber optic cable, coaxial cable and twisted pair wires to transmit, process and receive single or unified media data streams.
Abstract:
A programmable processor and method for improving the performance of processors by expanding at least two source operands, or a source and a result operand, to a width greater than the width of either the general purpose register or the data path width. The present invention provides operands which are substantially larger than the data path width of the processor by using the contents of a general purpose register to specify a memory address at which a plurality of data path widths of data can be read or written, as well as the size and shape of the operand. In addition, several instructions and apparatus for implementing these instructions are described which obtain performance advantages if the operands are not limited to the width accessible number of general purpose registers.
Abstract:
A general purpose processor with four copies of an access unit, with an access instruction fetch queue A-queue (101-104). Each A-queue (101-104) is coupled to an access register file AR (105-108) which is coupled to two access functional units A (109-116). In a typical embodiment, each thread of the processor may have on the order of sixty-four general purpose registers. The access unit functions independently by four simultaneous threads of execution, and each compute control flow by performing arithmetic and branch instructions and access memory by performing load and store instructions. These access units also provide wide specifiers for wide operand instructions. These eight access functional units A (109-116) produce results for access register files (105-108) and memory addresses to a shared memory system (117-120).
Abstract:
A programmable processor and method for improving the performance of processors by expanding at least two source operands, or a source and a result operand, to a width greater than the width of either the general purpose register or the data path width. The present invention provides operands which are substantially larger than the data path width of the processor by using the contents of a general purpose register to specify a memory address at which a plurality of data path widths of data can be read or written, as well as the size and shape of the operand. In addition, several instructions and apparatus for implementing these instructions are described which obtain performance advantages if the operands are not limited to the width accessible number of general purpose registers.