Abstract:
Embodiments are provided for facilitating an unmanned aerial vehicle (UAV) network. The UAV network in accordance with the disclosure can comprise multiple UAVs, ground processing stations, and/or any other components. A particular UAV in the network can carry payloads consisting of optical image sensors, processing devices, communication systems, and/or any other components. An individual UAV in the network can comprise photovoltaic cells capable of absorbing solar energy. Embodiments are provided for converting the solar energy to electricity for providing power to payloads aboard the UAV and as well as charging a battery aboard the UAV. In certain embodiments, the UAV can fly up to 65,000 feet and can cover as much as 500 km in range. One motivation of the present disclosure is to "outsource" some or entire information processing by an UAV to existing infrastructure, such as the ground processing station.
Abstract:
A technique for operating a movable radio base station, M-RBS, (200) is described. The M-RBS is configured to provide to a plurality of user equipments (120) wireless access to a telecommunications network (100). As to a method aspect of the technique, the M-RBS (200) is changed from a first mode to a second mode that is different from the first mode. Each of the first mode and the second mode specifies a set of parameter values for operating parameters of the M-RBS (200).
Abstract:
Systems and methods for providing broadband internet access to mobile platforms such as vehicles, aircraft, and portable devices, using a network of one or more entities such as drones/unmanned aerial vehicles (UAVs). In one embodiment, the drone communication system comprises an antenna sub-system, a radio sub-system and a data switching sub-system. The mobile platforms comprise antenna and radio sub-systems to communicate with the drones, detect changes in the mobile platforms azimuth and elevation changes, and adjust the mobile platform's antenna beam to compensate for the orientation changes to optimally point toward the drones. The exemplary mobile platform further comprises methods to detect the need for handoff to a different drone and to carry out the handoff. A mechanism to improve coverage to mobile platforms that may see obstruction on their path to the drone network is also disclosed, as are apparatus and methods for cost efficiently providing reliable internet access to portable devices.
Abstract:
A device, and method for situational awareness of an emergency scene for first responders uses an unmanned aerial vehicle- equipped with a sensor package in populated or otherwise restricted areas. The unmanned aerial vehicle is assigned to a control center for a designated incident while automatically tasking the unmanned aerial vehicle with the initiation of the incident response to autonomously proceed to the incident prior the control center taking active control of the unmanned aerial vehicle.
Abstract:
The invention relates to a method for transporting at least one information or advertising medium (1) by means of a remote-controllable, helicopter-type small flying vehicle (2). In said method, the information or advertising medium (1) is held substantially in a predefined shape (3) substantially underneath the small flying vehicle (2). The invention further relates to an apparatus (15) for transporting at least one information or advertising medium as well as to an information or advertising medium (1).
Abstract:
Methods and systems for determining trajectories for vehicles of a fleet of vehicles are provided. In one example, a method comprises receiving an initial location of one or more vehicles, and receiving a sequence of coverage requirements for a region and an associated period of time. The region may be divided into a plurality of landmarks and the period of time may be divided into a plurality of phases. The method also comprises determining for each of one or more phases and at least one respective landmark, a set of starting landmarks from which a vehicle could reach the respective landmark during the phase. The method further comprises determining which respective landmark that the vehicle should travel to during the one or more phases based on the sequence of coverage requirements and the set of starting landmarks for the one or more phases and the at least one respective landmark.
Abstract:
Disclosed embodiments relate to a combined shipping container and balloon deployment system for deploying balloons into a balloon network. Such a shipping container may allow one or more balloons to be transported to a desired launch location, and then launched directly from the shipping container.
Abstract:
An aerial unit includes a connecting element arranged to connect a ground unit to the aerial unit. The ground unit may include a connecting element manipulator, for altering an effective length of the connecting element and a ground unit controller for controlling the connecting element manipulator. A positioning unit is arranged to image the aerial unit and to generate metadata about a location of the aerial unit. An interfacing module is provided for coupling a payload to the aerial unit. At least one of the ground unit and the aerial unit may include a controller that is arranged to control, at least in response to the metadata, at least one of a first propeller motor and at least one steering element to affect at least one of the location of the aerial unit and the orientation of the aerial unit.
Abstract:
Disclosed is an aircraft (101), configured to have a wide range of flight speeds, consuming low levels of power for an extended period of time, while supporting a communications platform with an unobstructed downward-looking view. The aircraft (101) includes an extendable slat (205) at the leading edge of the wing (103), and a reflexed trailing edge. The aircraft comprises a flying wing (103) extending laterally between two ends and a center point. The wing (103) is swept and has a relatively constant chord. The aircraft (101) also includes a power module configured to provide power via a fuel cell (131). The fuel cell (131) stores liquid hydrogen as fuel, but uses gaseous hydrogen in the fuel cell (131). A fuel tank heater is used to control the boil-rate of the fuel in the fuel tank. The aircraft (101) of the invention includes a support structure including a plurality of supports, where the supports form a tetrahedron that affixes to the wing (103).
Abstract:
This disclosure provides a solar rechargeable aircraft (10) that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. The aircraft can be remotely piloted through multiple, redundant communication subsystems. The availability and reliability of each separate communication subsystem is continuously monitored. The aircraft has a wide variety of applications, which include serving as a long term high altitude platform that serves to link a ground station using radio wave signals and a satellite using optical signals.