Abstract:
A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
Abstract:
A method of forming a surface of micrometer dimensions conforming to a desired contour for a MEMS device, the method comprising providing a crystalline silicon substrate with a recess in an upper surface, providing a thinner layer of crystalline silicon over the upper surface of the substrate, fusion bonding the layer to the substrate under vacuum conditions, and applying heat to the layer and applying atmospheric pressure on the layer, such as to plastically deform the diaphragm within the recess to the desired contour. The substrate may form the fixed electrode of an electrostatic MEMS actuator, operating on the zip principle.
Abstract:
Chemically or biochemically active agents or other species are patterned on a substrate surface by providing a micromold having a contoured surface and forming, on a substrate surface, a chemically or biochemically active agent or fluid precursor of a structure. A chemically or biochemically active agent or fluid precursor also can be transferred from indentations in an applicator to a substrate surface. The substrate surface can be planar or non-planar. Fluid precursors of polymeric structures, inorganic ceramics and salts, and the like can be used to form patterned polymeric articles, inorganic salts and ceramics, reactive ion etch masks, etc. at the surface. The articles can be formed in a pattern including a portion having a lateral dimension of less than about 1 millimeter or smaller. The indentation pattern of the applicator can be used to transfer separate, distinct chemically or biochemically active agents or fluid precursors to separate, isolated regions of a substrate surface. Waveguide arrays, combinatorial chemical or biochemical libraris, etc. can be made. Differences in refractive index of waveguide and cladding can be created by subjecting the waveguide and cladding, made of identical prepolymeric material, to different polymerization or cross-linking conditions. Interferometers are defined by coupling arrays of waveguides, where coupling can be controlled by altering the difference in refractive index between cladding and waveguide at any desired location of the array. Alteration and refractive index can be created photochemically, chemically, or the like. Sensors also are disclosed, including biochemical sensors.
Abstract:
The present invention is directed to a microfluidic biochip based on an agglutination reaction that is frequently used in qualitative typing in the diagnostic medicine field by realizing a specimen inlet, a reagent inlet, a split microchannel, transfer microchannels, a chaos micromixer, a reaction microchamber, a microfilter, a passive microvalve, and an outlet on a plastic microchip. Particularly, the biochip of the present invention is characterized in that portability thereof is superior and a small amount (about 1 μl) of each of a specimen and a reagent is used. In addition, the biochip of the present invention can be cheaply made through conventional photolithography, electroplating, injection molding, and bonding. Therefore, by utilizing the microfluidic biochip for blood typing according to the present invention, a point-of-care diagnosis for performing blood typing based on an agglutination reaction at any place becomes possible.
Abstract:
A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
Abstract:
An inexpensive method of rapidly fabricating reactive metal (Zn, Al, Al-alloy, etc.) microscale structures including high-aspect-ratio microscale structures is disclosed. A high precision process uses conformal bond inhibitor coating and high temperature compression molding techniques to produce high quality, high aspect ratio metal structures. In one embodiment, following fabrication of an initial metallic microscale mold insert, an adhesion-promoting metal precursor layer and a ceramic bond inhibitor coating are conformally deposited onto the microscale mold insert. The microscale mold insert and a preselected reactive metal are then heated to an optimum temperature and compressed together. The mold insert is then extracted from the molded metal to produce a reverse image of the mold insert.
Abstract:
An imprint lithographic method for making a polymeric structure comprising the steps of: (a) providing a mold having a shape forming a mold pattern; (b) providing a substrate having a higher surface energy relative to said mold; (c) providing a polymer film on said mold, said polymer film having a selected thickness, wherein the selected thickness of the polymer film on the mold pattern is capable of forming at least one frangible region in the polymer film having a thickness that is less than the remainder of the polymer film; (d) pressing the mold and the substrate relatively toward each other to form said frangible region; and (e) releasing at least one of said mold and said substrate from the other, wherein after said releasing, said frangible region remains substantially attached to said mold while the remainder of said polymer film forms the polymeric structure attached to said substrate.
Abstract:
A method of fabricating a mold for glass press, characterized in that silicon carbide is deposited on the surface of a silicon mold, subsequently the deposited silicon carbide is bonded to a silicon carbide substrate, and thereafter the silicon mold is removed by etching. In this method of fabricating a mold for glass press, the bonding between the silicon carbide deposited on the silicon mold surface and the silicon carbide substrate can be strengthened by interposing a metal thin film.
Abstract:
What is proposed here is a method of structuring surfaces of glass-type materials and variants of this method, comprising the following steps of operation: providing a semiconductor substrate, structuring, with the formation of recesses, of at least one surface of the semiconductor substrate, providing a substrate of glass-type material, joining the semiconductor substrate to the glass-type substrate, with a structured surface of the semiconductor substrate being joined to a surface of the glass-type surface in an at least partly overlapping relationship, and heating the substrates so bonded by annealing in a way so as to induce an inflow of the glass-type material into the recesses of the structured surface of the semiconductor substrate. The variants of the method are particularly well suitable for the manufacture of micro-optical lenses and micro-mechanical components such as micro-relays or micro-valves.
Abstract:
What is proposed here is a method of structuring surfaces of glass-type materials and variants of this method, comprising the following steps of operation: providing a semiconductor substrate, structuring, with the formation of recesses, of at least one surface of the semiconductor substrate, providing a substrate of glass-type material, joining the semiconductor substrate to the glass-type substrate, with a structured surface of the semiconductor substrate being joined to a surface of the glass-type substrate in an at least partly overlapping relationship, and heating the substrates so bonded by annealing in a way so as to induce an inflow of the glass-type material into the recesses of the structured surface of the semiconductor substrate. The variants of the method are particularly well suitable for the manufacture of micro-optical lenses and micro-mechanical components such as micro-relays or micro-valves.