Abstract:
A method improves the operation of a diesel engine through the use of a fuel additive, a diesel particulate trap and a NO.sub.x -reducing catalyst. The operation of the NO.sub.x -reducing catalyst is enhanced by the introduction of urea or like compound upstream of the catalyst at temperatures effective for non-catalytic NO.sub.x reduction and the generation of ammonia. The additive comprises fuel-soluble compositions of platinum group metal in effective amounts to lower the emissions of unburned hydrocarbons and carbon monoxide from the trap. The catalytic activity provided to the exhaust system by the fuel additive is selective and preferably reduces the oxidation of SO.sub.2 to SO.sub.3. The platinum group metal compositions are preferably added in amounts effective to provide concentrations of the metal in the fuel of less than 1 part per million (ppm). Lithium and/or sodium compositions can be used in amounts effective to reduce the trap regeneration temperature, e.g. concentrations to provide about 1 to 100 ppm lithium metal, and/or 1 to 30 ppm sodium metal.
Abstract:
Hydrocarbonaceous fuels and additive compositions therefor which comprise: a) one or more fuel-soluble manganese carbonyl compounds; and b) one or more fuel-soluble alkali or alkaline earth metal-containing neutral or basic detergent salts. These compositions preferably contain, in addition to components a) and b) above, one or more of the following: c) one or more fuel-soluble ashless dispersants; d) at least one fuel-soluble demulsifying agent; e) at least one aliphatic or cycloaliphatic amine; and f) at least one metal deactivator. The compositions possess improved combustion characteristics (e.g., formation of less soot, smoke, carbonaceous products and/or noxious emissions), and form on combustion carbonaceous products of reduced acidity. The deposition of sludge on critical engine or burner parts or surfaces is reduced and the fuels have improved stability and demulsibility characteristics. And the fuel compositions can result in decreased fuel consumption in diesel engines.
Abstract:
A burner is operated by continuously feeding into its combustion zone while combustion is occurring therein, (a) a middle distillate burner fuel with which has been blended in any sequence or combination a minor combustion improving amount of fuel-soluble manganese polycarbonyl compound(s), and (b) a total amount of air above 100% of the stoichiometric amount required for complete combustion of all fuel being introduced into said zone but which is below 105% of such stoichiometric amount. Preferably at least alkali or alkaline earth metal-containing detergent and fuel-soluble dispersant have also been blended into the fuel being used. The efficiency of operation of blue and yellow burners is thereby improved, and emissions such as carbon monoxide and nitrogen oxide can be reduced as compared to operation of the same burner on the same unadditized base fuel.
Abstract:
A description is given of compositions comprisingA) a lubricant, a metalworking fluid or a hydraulic fluid, in particular a base oil from the group consisting of the mineral, vegetable and synthetic (for example poly-.alpha.-olefin or ester) oils;B) from 0.005 to 1.0% by weight of a compound of the formula ##STR1## in which R.sub.1 and R.sub.2 independently of one another are C.sub.3 -C.sub.18 alkyl, C.sub.5 -C.sub.12 cycloalkyl, C.sub.5 -C.sub.6 cycloalkylmethyl, C.sub.9 -C.sub.10 bicycloalkylmethyl, C.sub.9 -C.sub.10 tricycloalkylmethyl, phenyl or C.sub.7 -C.sub.24 alkylphenyl or together are (CH.sub.3).sub.2 C(CH.sub.2).sub.2, andR.sub.3 is hydrogen or methyl, and, if desired,C) other customary oil additives from the groups consisting of antioxidants, metal passivators, rust inhibitors, dispersants, detergents, viscosity index improvers, pour point depressants, antifoams, solid lubricants and further antiwear additives.
Abstract:
A liquid pour point depressant composition comprises a pour point depressant which is a solid at room temperature and which has a number average molecular weight of at least 500, and a liquid medium in which the material of pour point depressant is substantially insoluble at room temperature. The pour point depressant component is dispersed in the liquid medium.
Abstract:
A fuel additive comprising a urethane compound. A gasoline composition comprising gasoline blended with a urethane compound to suppress sludge or deposits in fuel intake systems or combustion chambers, such as an automobile engine.
Abstract:
The presence of a minor amount of an anti-oxidant, a metal detergent, a dispersant or mixtures thereof in a hydrocarbon liquid containing certain quaternary ammonium hydroxides has been found to be effective in improving the thermal stability of the hydroxides.
Abstract:
A fuel composition for internal combustion engines, and more particularly, a fuel composition for internal combustion engines containing less than about 0.5 gram of lead per gallon of fuel is described. The fuel provides acceptable valve seat protection in engines designed to operate on leaded fuels. A further aspect of the invention is to reduce deposit formation within the cylinders.
Abstract:
A process for stabilizing solutions of metal carbonyls in organic solvents, preferably in hydrocarbons, in which one or more aluminum-containing, organic compounds are dissolved in the solutions as stabilizers. The aluminum in such compounds is directly bonded to carbon and/or oxygen atoms. More specifically, the aluminum containing organic compounds are reaction products between aluminum alkoxides and one or more compounds having the formula:
WHEREIN R1 represents hydrogen, alkyl having up to 8 carbon atoms, aryl or aralkyl having up to 10 carbon atoms, alkoxy having up to 8 carbon atoms, aryloxy or aralkoxy having up to 10 carbon atoms, or a group having the formula:
AND THE GROUPS R2, R3, R4 and R5 each, and independently of each other, represent hydrogen, alkyl having up to 8 carbon atoms, or aryl or aralkyl having up to 10 carbon atoms. The aluminumcontaining organic compounds can be added to the solutions of metal carbonyls in an amount corresponding to 1 part by weight of aluminum to 50 to 200 parts by weight of the metal in the metal carbonyl.
Abstract:
A method of reducing manganese containing deposits formed on the surfaces of jet engines from burning fuel containing organomanganese compounds as a smoke reducer is described. The deposits are reduced by adding an organic molybdenum compound to the organomanganese containing fuel. Cyclopentadienyl manganese tricarbonyl compounds are useful organomanganese compounds; molybdenum naphthenate is a useful molybdenum compound.