Abstract:
An ionic liquid ion source can include a microfabricated body including a base and a tip. The body can be formed of a porous material compatible with at least one of an ionic liquid or room-temperature molten salt. The body can have a pore size gradient that decreases from the base of the body to the tip of the body, such that the at least one of an ionic liquid or room-temperature molten salt is capable of being transported through capillarity from the base to the tip.
Abstract:
A filament for a light bulb includes a tube and a filament material within the tube, wherein the filament material is configured to be in a liquid state while the light bulb is in use.
Abstract:
A thermal electron emitter includes at least one carbon nanotube twisted wire and a plurality of electron emission particles mixed with the twisted wire. The carbon nanotube twisted wire comprises a plurality of carbon nanotubes. A work function of the electron emission particles is lower than the work function of the carbon nanotubes. A thermal electron emission device using the thermal electron emitter is also related.
Abstract:
A carbon nanotube-based device (40) includes a substrate (10), a number of catalytic nano-sized particles (131) formed on the substrate, and an aligned carbon nanotube array (15) extending from the alloy catalytic nano-sized particles. The aligned carbon nanotube array progressively bends in a predetermined direction. A method for making the carbon nanotube-based device includes the steps of: providing a substrate; depositing a layer of catalyst on the substrate; depositing a layer of catalyst dopant material on the catalyst layer, for varying a reaction rate of synthesis of the aligned carbon nanotube array; annealing the catalyst and the catalyst dopant material in an oxygen-containing gas at a low temperature; and exposing the nano-sized particles and catalyst dopant material to a carbon-containing source gas at a predetermined temperature such that the aligned carbon nanotube array grows from the substrate.
Abstract:
In a field emitter (100) including a substrate (110), the substrate (110) has a substantially non-conductive top substrate surface (112). A conductive cathode member (130) is disposed on the top substrate surface (112) and has a top cathode surface (132). A conductive gate member (120) is disposed on the top substrate surface (112) and is substantially coplanar with the cathode member (130). An emitter structure (140) extends away from the top cathode surface (132). The gate member (120) is spaced apart from the cathode member (130) at a distance so that when a predetermined potential is applied between the cathode member (130) and gate member (120), the emitter structure (140) will emit electrons.
Abstract:
To provide an antistatic film that requires low power consumption and provides satisfactory electric contact, as a measure for preventing an insulating substrate surface having an electronic device formed thereon from being charged. The electronic device includes: an insulating substrate; a conductor; and a resistance film connected with the conductor, the conductor and the resistance film being formed on the insulating substrate, characterized in that the resistance film has a larger thickness in a connection region with the conductor than a thickness in portions other than the connection region.
Abstract:
A field emission device (8) includes a cathode (80), an anode (84), and spacers (83) interposed therebetween. The cathode includes a network base (81) and a plurality of field emitters (82) formed thereon. The network base is formed of a plurality of electrically conductive carriers. The field emitters are located on surfaces of the carriers, respectively. The field emitters extend radially outwardly from the corresponding conductive carriers. The plurality of electrically conductive carriers may be made of electrically conductive fibers, for example, metal fibers, carbon fibers, organic fibers or another suitable fibrous material. Carrier portions of the plurality of electrically conductive carriers may be cylindrical, curved/arcuate, or at least approximately curved in shape.
Abstract:
An improved process for growing carbon nanotubes includes steps of providing a glass substrate that has a porous surface, depositing a catalyst into the pores on the porous surface, and growing carbon nanotubes on the substrate. Desirably, the carbon nanotubes are grown using a chemical vapor deposition technique in which the direction of flow of a carbon precursor gas (and any optional diluent gases) is aligned with the desired direction of growth propagation. The techniques of the invention provide a field emission device having more uniformly aligned carbon nanotubes and/or more uniformly sized carbon nanotubes.
Abstract:
An electronic device in which a substrate with a pair of electrodes is provided and a carbon nanotube is formed or arranged in relation to the electrodes.
Abstract:
The invention provides an image forming apparatus in which orbit shift can be prevented to perform good image display in an electron beam emitted from the electron-emitting device adjacent to the spacer when an antistatic spacer coated with a high resistance film is used. A surface shape is controlled by forming a fine particle film on the surface of a row directional wiring 5 in which a spacer 3 is arranged, the electron emission is realized from electron-emitting areas 14a and 14b near contacting areas 15a and 15b in a non-contacting area 16 in which the spacer 3 is not in contact with the row directional wiring 5, and the non-contacting area 16 of the spacer 3 is irradiated with the electron to decrease a potential, which allows a good equipotential line 17 to be formed.