Abstract:
An ionic liquid ion source can include a microfabricated body including a base and a tip. The body can be formed of a porous material compatible with at least one of an ionic liquid or room-temperature molten salt. The body can have a pore size gradient that decreases from the base of the body to the tip of the body, such that the at least one of an ionic liquid or room-temperature molten salt is capable of being transported through capillarity from the base to the tip.
Abstract:
Optimization techniques are disclosed for producing sharp and stable tips/nanotips relying on liquid Taylor cones created from electrically conductive materials with high melting points. A wire substrate of such a material with a preform end in the shape of a regular or concave cone, is first melted with a focused laser beam. Under the influence of a high positive potential, a Taylor cone in a liquid/molten state is formed at that end. The cone is then quenched upon cessation of the laser power, thus freezing the Taylor cone. The tip of the frozen Taylor cone is reheated by the laser to allow its precise localized melting and shaping. Tips thus obtained yield desirable end-forms suitable as electron field emission sources for a variety of applications. In-situ regeneration of the tip is readily accomplished. These tips can also be employed as regenerable bright ion sources using field ionization/desorption of introduced chemical species.
Abstract:
A novel high brightness point ion source (10) that is adapted to operate with liquid ionic compounds such as mixtures of molten salts, bases or acids. The ion source is basically comprised of two parts: the needle assembly (11) and the extraction assembly (12). The former consists of a point shaped needle (13) made of a refractory ceramic material, whose sharpened extremity is referred to as the tip (13a). The needle is partially lodged in a recess of an insulating support (15). A heating coil (14) made of stainless steel is tightly wound around a portion of the needle adjacent to the tip. The needle is coated with the mixture, for instance, by dipping in a crucible containing the mixture. The extraction assembly is comprised of a metal extracting electrode (20) provided with a central aperture that is screwed on a cylindrical metallic body (19), so that the spacing between the tip and the aperture center is adjustable. The needle assembly is mounted inside the cylindrical body and accurately affixed thereto by centering screws (22). The high brightness point ion source is then ready for use in a FIB column. A heating current supply (18) is connected to the coil extremities to melt the mixture if necessary. An extraction voltage supply (23) applies a potential difference between the extraction assembly and the mixture at the tip apex for ion emission.
Abstract:
A processing method and a processing apparatus realizing the method use a focused ion beam generator. The apparatus includes a plasma or liquid metal ion source producing ions not influencing electric characteristics of a sample, an ion beam generator for extracting ions from the ion source into an ion beam, an ion beam focusing device for focusing the ion beam, an irradiator for irradiating the focused ion beam onto the sample, and a sample chamber in which the sample to be irradiated for processing is installed. The focused ion beam is irradiated onto a sample such as a silicon wafer or device to conduct on a particular position of the sample a fine machining work, a fine layer accumulation, and an analysis.
Abstract:
La présente invention concerne un générateur (10) de faisceau ionique, comportant une électrode d'émission (12), une électrode d'extraction (14), et un générateur électrique (16). L'électrode d'émission comporte un substrat (20) et une pluralité de nanofils (24) s'étendant à partir dudit substrat, sensiblement en direction de l'électrode d'extraction, lesdits nanofils ayant une longueur comprise entre 50 nm et 50 μm. L'électrode d'émission comporte une source d'ions comprenant une nappe (42) de liquide ionique (40) formée sur le substrat et immergeant au moins partiellement les nanofils. Lesdits nanofils et le substrat sont électriquement isolants ou semi-conducteurs, le générateur électrique (16) étant relié à la nappe (42) de liquide ionique. L'électrode d'émission est ainsi apte à envoyer vers l'électrode d'extraction des faisceaux d'ions issus du liquide ionique.