Abstract:
A microfabricated pressure transducer is formed in a multilayer substrate by etching a plurality of shallow and deep wells into the layers, and then joining these wells with voids formed by anisotropic etching. The voids define a flexible membrane over the substrate which deforms when a force is applied.
Abstract:
We describe here a method that employs through substrate vias (TSVs) to frustrate the standing waves that are formed in the metal trace. TSVs may be formed at intervals in the first substrate, electrically coupling the metal bondline to the ground plane.
Abstract:
The present application discloses a method for forming electrical contacts on a semiconductor substrate. The method includes forming a first metal layer over the substrate, and forming a layer of a second metal oxide by sputter deposition of a second metal in an oxygen environment.
Abstract:
A microfabricated optical apparatus that includes a light source driven by a waveform, a turning mirror, and a beam shaping element, wherein the waveform is delivered to the light source by at least one through silicon via.
Abstract:
Systems and methods for forming an electrostatic MEMS switch include forming a movable cantilevered beam on a first substrate, forming the electrical contacts on a second substrate, and coupling the two substrates using a hermetic seal. Electrical access to the electrostatic MEMS switch may be made by forming vias through the thickness of the second substrate. The cantilevered beam may be formed by etching the perimeter shape in the device layer of an SOI substrate. An additional void may be formed in the movable beam such that it bends about an additional hinge line as a result of the additional void. This may give the beam and switch advantageous kinematic characteristics.
Abstract:
A method for forming through silicon vias (TSVs) in a silicon substrate is disclosed. The method involves forming a silicon post as an substantially continuous annulus in a first side of a silicon substrate, removing material from an opposite side to the level of the substantially continuous annulus, removing the silicon post and replacing it with a metal material to form a metal via extending through the thickness of the substrate. The substantially continuous annulus may be interrupted by at least one tether which connects the silicon post to the silicon substrate. The tether may be formed of a thing isthmus of silicon, or some suitable insulating material.
Abstract:
A bonding technology is disclosed that can form an anodic, conductive bond between two optically transparent substrates. The anodic bond may be accompanied by a metal alloy, solder, eutectic and polymer bond. The first anodic bond may provide one attribute such as hermeticity, whereas the second bond may provide another attribute, such as electrical conductivity.
Abstract:
A method for forming a cavity in a microfabricated structure, includes the sealing of that cavity with a low temperature solder. The method may include forming a sacrificial layer over a substrate, forming a flexible membrane over the sacrificial layer, forming a release hole through a flexible membrane to the sacrificial layer, introducing an etchant through the release hole to remove the sacrificial layer, and then sealing that release hole with a low temperature solder.
Abstract:
Systems and methods for forming a mm wave resonant filter include a lithographically fabricated high Q resonant structure. The resonant structure may include a plurality of cavities, each cavity having a characteristic frequency that defines its passband. A filter may include a plurality of resonant structures, and each resonant structure may include a plurality of cavities. These cavities and filters may be fabricated lithographically.
Abstract:
Systems and methods for forming a mm wave resonant filter include a lithographically fabricated high Q resonant structure. The resonant structure may include a plurality of cavities, each cavity having a characteristic frequency that defines its passband. A filter may include a plurality of resonant structures, and each resonant structure may include a plurality of cavities. These cavities and filters may be fabricated lithographically.