Abstract:
A bonding technology is disclosed that can form an anodic, conductive bond between two optically transparent substrates. The anodic bond may be accompanied by a metal alloy, solder, eutectic and polymer bond. The first anodic bond may provide one attribute such as hermeticity, whereas the second bond may provide another attribute, such as electrical conductivity.
Abstract:
A method for forming a cavity in a microfabricated structure, includes the sealing of that cavity with a low temperature solder. The method may include forming a sacrificial layer over a substrate, forming a flexible membrane over the sacrificial layer, forming a release hole through a flexible membrane to the sacrificial layer, introducing an etchant through the release hole to remove the sacrificial layer, and then sealing that release hole with a low temperature solder.
Abstract:
A first ion rich dielectric substrate with a patterned dielectric barrier and a oxidizable metal layer is anodically bonded to a second ion rich dielectric substrate. To bond the substrates, the oxidizable metal layer is oxidized. The dielectric barrier may inhibit the migration of these ions to the bondline, which might otherwise poison the bond strength. Accordingly, when joining the two substrates, a strong bond is maintained between the wafers.
Abstract:
A bonding technology is disclosed that can form an anodic, conductive bond between two optically transparent substrates. The anodic bond may be accompanied by a Second bond, for example a metal alloy, solder, eutectic and polymer bond. The two bonds may be used for the same or a different purpose, and may be selected for the following attributes: hermeticity, electrical conductivity, low RF loss, high adhesive strength, leak resistance, thermal conductivity. The attributes for each bonding technology may be the same, or they may be different.
Abstract:
A microfabricated pressure transducer is formed in a multilayer substrate by etching a plurality of shallow and deep wells into the layers, and then joining these wells with voids formed by anisotropic etching. The voids define a flexible membrane over the substrate which deforms when a force is applied.
Abstract:
A bonding technology is disclosed that can form an anodic, conductive bond between two optically transparent substrates. The anodic bond may be accompanied by a metal alloy, solder, eutectic and polymer bond. The first anodic bond may provide one attribute such as hermeticity, whereas the second bond may provide another attribute, such as electrical conductivity.