Abstract:
PURPOSE: A pose recognizing system using a joint model database is provided to improve a recognition speed and recognition rate. CONSTITUTION: A preprocessor(120) obtains a foreground image from an input image and changes the foreground into a distance converting image. A key pose recognizer(130) generates a joint model and a key pose eigenvectors and stores a pose library(110). The key pose recognizer extracts a key pose characteristic vector which is the most similar with a current image.
Abstract:
PURPOSE: An apparatus for improving gesture recognizing ratio in a mobile device is provided to generate integrated specification information from a plurality of input data, and recognize a gesture. CONSTITUTION: A gesture recognition unit(102) comprises a data acquisition unit(104), a feature extraction unit(106), and an integrated information generator(108). The data acquisition unit acquires a plurality of input data through cameras. The feature extraction unit performs pre-processing about a plurality of input data. The feature information extraction unit classifies the domain capable of gesture recognition. The integrated information generator mixes the extracted feature information to one integrated feature information.
Abstract:
PURPOSE: A recognition method of three dimensional human pose using a single camera is provided to estimate the photographing direction of human body by comparing angle histogram obtained from two dimensional pose image. CONSTITUTION: A three dimensional human body pose method for recognizing by a single camera is as follows. A target object having arbitrary three dimensional pose is photographed to obtain standard two dimensional pose images(S1000). A silhouette image of each standard two dimensional pose image is extracted, and the standard pose model is created based on the standard silhouette image. The standard pose model is stored in a standard pose model database. Standard pose models are created after repeating the first or third step, and stores in standard pose model database. The detection two dimensional pose image which takes a photograph of the detection object in the arbitrary direction by the single camera is gotten. The detected two dimensional pose image detection silhouette image is extracted which is based on the detected silhouette image and the video feature of the detection object. The standard pose model is obtained which has a closest similarity with the detection pose model.
Abstract:
PURPOSE: A particle resampling method based on an index function and an image object tracking method using the same are provided to enable a user to effectively track an image object according to a purpose. CONSTITUTION: An image object is determined wherein the image object is a tracking target. Particles of a particle filter are initialized(S1000). A location of the image object is determined in a current location(S2000). Prediction particles predicted for determining the image object are generated by initial particles on which prediction particles of a next image are calculated based(S3000). It is determined whether an object determined as the image object is located in the current image(S4000).
Abstract:
PURPOSE: A method for extracting multi touch feature information and a multi touch gesture recognizing method using the multi touch feature information are provided to record the features of a multi touch by edge information at a touched point, thereby providing various feature information of the multi touch during touch gesture recognition. CONSTITUTION: Location information about touched points is received from a touch panel(10). Touch points located within a fixed radius around the touched points correspond each other one to one. Edge information is generated wherein the edge information is made of location information of two touch points which are connected each other. Touch graph information is generated and extracted by multi touch feature information. If updated location information is inputted, the touch graph information is updated based on the updated location information.
Abstract:
PURPOSE: A human body posture estimating method is provided to estimate accurate human body posture by the reflection of Newton step through a numerical inverse kinematic based UKF(Unscented Kalman Filter). CONSTITUTION: A system calculates a prediction rotation value from the joint rotation value of a first image(S3000). The system calculates a measurement location value from the prediction rotation value(S4000). The system calculates a final measurement rotation value through a UKF(Unscented Kalman Filter)(S5000). The system calculates the final measurement location value from a final observation rotation value(S6000). The system estimates a human body posture(S7000, S8000).
Abstract:
본 발명은 단일 카메라를 이용한 삼차원 인체 포즈 인식 방법에 관한 것으로, 더욱 상세하게는 서로 다른 포즈를 갖는 기준이 되는 인체들의 실루엣 영상의 특징점에 기반하여 다수 개의 기준 포즈 모델을 생성하여 저장하고, 단일 카메라를 이용하여 검출할 인체의 검출 포즈 모델을 생성하여 상기 기준 포즈 모델들과 비교함으로써 검출할 인체의 삼차원 포즈 및 촬영방향을 추정하는 단일 카메라를 이용한 삼차원 인체 포즈 인식방법에 관한 것이다. 삼차원 포즈, 단일 카메라, 실루엣, 특징점, 히스토그램, 경계영상
Abstract:
본 발명은 스테레오 시각 정보를 이용한 복수 인물 추적 방법 및 그 시스템에 관한 것으로 더욱 상세하게는 스테레오 카메라를 이용하여 인물들 간의 겹침 현상을 효율적으로 구분하고 부분영역 단위로 적분 히스토그램을 이용하여 연산비용을 최소화한 스테레오 시각 정보를 이용한 복수 인물 추적 방법 및 그 시스템에 관한 것이다. 본 발명에 따른 스테레오 시각 정보를 이용한 복수 인물 추적 방법은 스테레오 카메라를 이용하여 배경의 영상을 일정한 초당 프레임으로 촬영하는 단계, 상기 프레임에 움직이는 인물의 영상이 촬영되어 상기 인물의 색상 정보가 추출되는 색상 정보 추출 단계, 상기 추출된 인물의 색상 정보를 이용하여 상기 배경과 상기 인물이 분리되는 단계, 상기 촬영된 인물의 영상을 이용하여 영상 시차를 검출하는 단계, 상기 분리된 인물을 일정한 개수의 부분영역들로 분할하는 단계, 상기 부분영역들 별로 적분 히스토그램을 연산하는 단계, 상기 부분영역들의 히스토그램을 이용하여 객체 모델을 도출하는 단계, 상기 도출된 객체에 이름을 부여하는 레이블링 단계 및 상기 레이블링된 객체를 추적하는 객체 추적 단계를 포함한다. 복수 인물 추적, IHLS, Disparity, 적분 히스토그램, Segmentation
Abstract:
The present invention relates to an image tracking method. Particularly, a full-body joint image tracking method using an evolutionary exemplar-based particle filter improves the accuracy of a full-body joint image tracking by determining an optimal pose of the present through a particle filter synthetically based on resampled sample particles after the optimal pose is determined at some previous time and exemplar-based particles renewed along the flow of time. [Reference numerals] (AA) Start;(BB) End;(S1000) Generate exemplar-based pose particle DB and sample particle DB;(S2000) Input a silhouette image;(S3000) Calculate similarity between the silhouette image and exemplar-based pose particles;(S4000) Predict present pose particles from exemplar-based pose particles and sample particles by using a particle filter;(S5000) Calculate similarity between the present pose particles and the silhouette image;(S6000) Determine an optimal pose;(S7000) Re-sample the present pose particles and update sample particle DB;(S8000) Update the optimal pose to the exemplar-based pose particle DB;(S9000) Input a next silhouette image?