Abstract:
PURPOSE: A method is provided to manufacture a sintered porous stainless steel sheet with gradient pore structures having superior filtering and sound absorption effects using waste byproducts generated when manufacturing stainless steel rods. CONSTITUTION: The method for manufacturing a porous stainless steel sheet with gradient pore structures using waste stainless steel scrap fiber comprises the steps of removing polymer material contained in byproducts of the waste stainless steel scrap fiber generated during the process of producing a stainless steel rod; laying up stainless steel scrap in a stainless steel web shape having a lamellar structure; and adhering each of adjacent portions of the scraps forming the stainless steel web laid up the above step, wherein the polymer material contained in the waste stainless steel scrap fiber is removed with a toluene solution which is mixed with a dispersing agent, the stainless steel scrap is laid up so that a size of the stainless steel scrap is continuously varied in the formation step of the stainless steel web, and the adhesion of the stainless steel scraps onto the adjacent portions is performed through sintering treatment.
Abstract:
PURPOSE: A method is provided to manufacture a sintered porous stainless steel sheet with gradient pore structures having superior filtering and sound absorption effects using waste byproducts generated when manufacturing stainless steel rods. CONSTITUTION: The method for manufacturing a porous stainless steel sheet with gradient pore structures using waste stainless steel scrap fiber comprises the steps of removing polymer material contained in byproducts of the waste stainless steel scrap fiber generated during the process of producing a stainless steel rod; laying up stainless steel scrap in a stainless steel web shape having a lamellar structure; and adhering each of adjacent portions of the scraps forming the stainless steel web laid up the above step, wherein the polymer material contained in the waste stainless steel scrap fiber is removed with a toluene solution which is mixed with a dispersing agent, the stainless steel scrap is laid up so that a size of the stainless steel scrap is continuously varied in the formation step of the stainless steel web, and the adhesion of the stainless steel scraps onto the adjacent portions is performed through sintering treatment.
Abstract:
PURPOSE: A process for producing porous aluminum using pressure-assisted current sintering is provided to effectively control pore size/volume and its microstructure, thereby obtaining porous aluminum having superior filtering and sound absorption effects when it is used as a filter and a sound absorbing material. CONSTITUTION: The process includes: (i) laying up a raw material of aluminum powder, aluminum short staple, or a mixture thereof; (ii) forming the raw material by applying a pressure of 2 to 100 kg/cm¬2 to the laid up raw material; and (iii) directly bonding aluminum powder or short staple by directly supplying power to aluminum green compact using the pressed and power supplied sintering with a voltage of 0.2 to 10 V/cm¬3 and a current of 20 to 500 A/cm¬3 after forming, thereby partially smelting alumina present on the surface of aluminum.
Abstract translation:目的:提供使用压力辅助电流烧结制造多孔铝的方法,以有效地控制孔径/体积及其微结构,从而获得当用作过滤器和吸声材料时具有优异的过滤效果和吸音效果的多孔铝 。 规定:该方法包括:(i)生产铝粉,铝短纤维或其混合物的原料; (ii)通过对所铺设的原料施加2至100kg / cm 2的压力来形成原料; 和(iii)通过使用0.2至10V / cm -3的电压和20至500A / cm 3的电流的压制和供电烧结直接将铝粉末直接供电给铝粉末,直接接合铝粉末或短纤维 成型后,部分地熔融存在于铝表面的氧化铝。
Abstract:
A WSi2-SiC nanocomposite coating layer and a manufacturing method thereof are provided to improve anti-oxidation characteristic of the coating layer in the high temperature condition by preventing micro crack from being formed in the nanocomposite coating layer. A method for manufacturing a WSi2-SiC nanocomposite coating layer comprises steps of vapor-depositing tungsten and carbon on the surface of tungsten or tungsten alloy to form a W2C coating layer, and vapor-depositing silicon on the surface of the W2C coating layer to form the WSi2-(17-19.3) vol.% SiC nanocomposite coating layer. The carbon is subject to chemical deposition using one selected from the group consisting of CO, CH4, C2H4 and CH2I2, and simultaneously the tungsten is subject to chemical deposition using WF6, WCl6 or W(CO)6. The silicon is subject to chemical deposition using SiCl4, SiH2Cl2, SiH3Cl or SiH4.
Abstract:
본 발명은 은 코팅층이 첨가된 동-알루미늄 클래드 부스바 및 그 제조방법에 관한 것으로서, 제작이 용이하고 경제적이면서도 전기 전도도와 기계적 특성이 우수한 경량화된 동-은-알루미늄 적층 구조를 갖는 통전용 부스바를 제공한다. 본 발명에 따른 부스바는 기존의 동 부스바와 유사한 전기 전도도와 기계적 특성을 유지하면서 경량이고 경제적인 장점이 있다.
Abstract:
본 발명은 은 코팅층이 첨가된 동-알루미늄 클래드 부스바 및 그 제조방법에 관한 것으로서, 제작이 용이하고 경제적이면서도 전기 전도도와 기계적 특성이 우수한 경량화된 동-은-알루미늄 적층 구조를 갖는 통전용 부스바를 제공한다. 본 발명에 따른 부스바는 기존의 동 부스바와 유사한 전기 전도도와 기계적 특성을 유지하면서 경량이고 경제적인 장점이 있다.
Abstract:
PURPOSE: A process for producing porous aluminum using pressure-assisted current sintering is provided to effectively control pore size/volume and its microstructure, thereby obtaining porous aluminum having superior filtering and sound absorption effects when it is used as a filter and a sound absorbing material. CONSTITUTION: The process includes: (i) laying up a raw material of aluminum powder, aluminum short staple, or a mixture thereof; (ii) forming the raw material by applying a pressure of 2 to 100 kg/cm¬2 to the laid up raw material; and (iii) directly bonding aluminum powder or short staple by directly supplying power to aluminum green compact using the pressed and power supplied sintering with a voltage of 0.2 to 10 V/cm¬3 and a current of 20 to 500 A/cm¬3 after forming, thereby partially smelting alumina present on the surface of aluminum.
Abstract translation:目的:提供一种利用压力辅助电流烧结制造多孔铝的方法,以有效地控制孔径/体积及其微观结构,由此获得当用作过滤器和吸音材料时具有优异的过滤和吸音效果的多孔铝 。 组成:该工艺包括:(1)铺设铝粉,铝短纤维或其混合物的原材料; (ii)通过对所铺设的原材料施加2至100kg / cm 2的压力来形成原材料; (iii)通过以0.2至10V / cm 3的电压和20至500A / cm 3的电压进行压制和供电烧结,通过直接向铝压坯供电来直接结合铝粉或短纤维 在成形之后,由此部分熔炼存在于铝表面上的氧化铝。
Abstract:
An aluminum plate on which a metal is partially coated, a method for manufacturing the same, a heat exchanger applying the same, and a method for manufacturing the heat exchanger are provided to weld an aluminum cooling pin using a metal that has lower thermal conductivity. On an aluminum plate, copper or copper alloy or a metal that can be easily brazed or soldered is partially coated. The metal is any one of nickel, chrome, steel, tin, zinc, cobalt, silver, copper, and alloy. A method for manufacturing the aluminum plate on which the metal is partially coated comprises the steps: partially stacking the metal plate on the aluminum plate or the alloy plate; and cladding-welding the two plates.
Abstract:
A new TaSi2-SiC nanocomposite coating layer formed on a surface of tantalum or tantalum alloys is provided to improve isothermal oxidation resistance and repeated oxidation resistance of the coating layer at high temperatures and improve mechanical properties of the coating layer at high temperatures, and a manufacturing method of the nanocomposite coating layer is provided. A manufacturing method of a TaSi2-SiC nanocomposite coating layer comprises the steps of: (a) simultaneously vapor-depositing tantalum and carbon onto a surface of tantalum or tantalum alloys as a matrix to form a TaC coating layer on the surface of the matrix, and forming a Ta2C coating layer on the TaC coating layer; and (b) vapor-depositing silicon onto the surface of the tantalum carbide coating layer to form a TaSi2-(31.5-16) vol.% SiC nanocomposite coating layer, wherein the nanocomposite coating layer is gradient structured such that the SiC volume fraction of the nanocomposite coating layer is reduced as it goes from the matrix side to the surface side.
Abstract:
본 발명은 광통신 전자소자 패키지용 금속 케이스 및 케이스 부품의 제조 방법에 관한 것으로, 상세하게는 온간 및 열간 가공법을 이용하여 금속 원소재의 손실을 최소화하고, 열간 가공 공정의 자동화로 다양한 형상의 금속 케이스 및 게이스용 부품을 경제적으로 대량 생산할 수 있는 제조방법에 관한 것이다. 본 발명에 따른 광통신 전자소자 패키지용 케이스 및 그 부품의 제조방법은, 특정 형상의 광부품 패키지용 케이스 및 케이스 부품의 부피보다 5-10% 크도록 금속 소재를 봉상으로 절단하는 공정과; 상기 금속 소재를 제1 가열로로 운반하는 공정과; 상기 금속 소재를 상기 제1 가열로 내에서 성형 온도로 연속하여 가열하는 공정과; 상기 금속 소재를 성형용 금형 내로 운반하는 공정과; 상기 금속 소재를 상기 금형 내에서 열간 성형하는 공정과; 상기 성형된 금속 소재를 상기 금형으로부터 탈착시키는 공정과; 상기 금속 소재를 제2 가열로로 운반하는 공정과; 가공 응력을 완화하기 위해 상기 성형된 금속 소재를 진공 또는 불활성 분위기하에서 상기 제2 가열로에서 열처리하는 공정과; 상기 열처리 공정 중에 생성된 산화피막을 제거하고 최종 제품 규격에 맞도록, 성형된 상기 금속 소재를 마무리 기계 가공을 하는 공정을 포함하여 구성되며, 이상의 공정은 자동화 공정으로 수행될 수 있으며, 원소재의 손실을 최소한으로 하면서 경제적인 방법으로 대량 생산을 가능하게 한다.