Abstract:
본 발명의 일 관점에 따른 반도체 반응기용 금속모재 상의 코팅층 형성방법은 반도체 반응기용 금속모재를 NaOH 및 NaAlO 2 를 포함하는 알칼리 수용액성 전해액에 담지하는 단계; 및 상기 금속모재에 전극을 연결하고 상기 전극에 전원을 공급하여, 플라즈마 전해 산화(plasma electrolytic oxidation, PEO)법으로 상기 금속모재 상에 코팅층을 형성하는 단계를 포함한다.
Abstract:
본 발명은 플라즈마 전해양극 산화방법에 관한 것이다. 플라즈마 전해양극 산화방법은 i) 피처리 부재를 전처리하는 단계, ii) 피처리 부재를 전해액에 담지하고, 피처리 부재를 플라즈마전해 양극산화장치에 연결하는 단계, 및 iii) 플라즈마전해 양극산화장치가 양전류 및 음전류를 교대로 제공하여 피처리 부재에 산화막을 형성하는 단계를 포함한다.
Abstract:
본 발명은 모재로서 니오비움 또는 그 합금의 표면상에 형성된 NbSi 2 계 나노 복합 피복층 및 그 제조방법에 관한 것으로서, 고온에서 상기 모재 표면에 탄소 또는 질소를 기상 증착하여 니오비움 탄화물 또는 니오비움 질화물 확산층을 형성한 후 실리콘을 기상 증착하여 고상치환반응에 의해서 나노 복합 피복층을 제조한다. 상기 나노 복합 피복층은 등축정의 NbSi 2 결정입계에 SiC 또는 Si 3 N 4 입자들이 분포된 미세조직을 가지며, 나노 복합 피복층에 존재하는 SiC 또는 Si 3 N 4 입자들의 부피 분율에 의해서 모재의 열팽창계수와 유사한 조성의 NbSi 2 계 나노 복합 피복층이 형성된다. 이에 따라, 열팽창계수차에 의한 크랙의 발생을 근원적으로 억제하여 고온 반복 내산화성을 향상시키며, 또한, 피복층 표면에 치밀한 SiO 2 산화피막이 형성되어 고온 등온 내산화성의 향상과 더불어, 피복층의 기계적 성질의 개선, 즉 열응력에 의한 미세크랙의 전파 억제를 기할 수 있다. 니오비움, 피복층, 열팽창계수
Abstract:
본 발명은 몰리브덴, 니오비움, 탄탈륨, 텅스텐 등과 같은 고융점 금속들 및 이들의 합금들과 같이 우수한 고온 내산화성을 필요로 하는 소재들 표면상에 형성된 MoSi 2 -SiC 나노 복합 피복층 및 그 제조방법에 관한 것으로서, 고온에서 상기 모재들 표면에 몰리브덴 탄화물 코팅층 (MoC, Mo 2 C)을 형성한 후 실리콘을 기상 증착하여 고상치환반응에 의해서 MoSi 2 -SiC 나노 복합 피복층을 제조한다. 상기 방법으로 제조된 MoSi 2 -SiC 나노 복합 피복층은 등축정의 MoSi 2 결정입계에 SiC 입자들이 분포된 미세조직을 특징으로 하며, MoSi 2 -SiC 나노 복합 피복층에 존재하는 SiC 입자들의 부피 분율을 조절하여 모재의 열팽창계수와 유사한 조성의 MoSi 2 -SiC 나노 복합 피복층이 가능하다. 따라서, 모재와 MoSi 2 -SiC 나노 복합 피복층의 열팽창계수차에 의해서 생성될 수 있는 크랙의 발생을 근원적으로 억제함으로써 고온 반복 내산화성 및 저온 내산화성이 향상되고, 피복층의 기계적성질의 개선되어 열응력에 의한 미세크랙의 전파 억제할 수 있다. MoSi₂, 복합피복층, 내산화성
Abstract:
PURPOSE: A method and device for recovering nonmagnetic stainless steel fiber and grinding oil from stainless steel scraps simultaneously is provided to prevent environmental pollution by using a dry heating method. CONSTITUTION: A device for recovering nonmagnetic stainless steel fiber and grinding oil from stainless steel scraps is composed of a reaction tube(230) to which the stainless steel scraps are supplied, a heating furnace(240) heating the reaction tube, an automatic feeding unit feeding the scraps to the reaction tube continuously, a cooling unit condensing evaporated materials, a recovery case(270) recovering the condensed materials, and an automatic classifier(280) classifying the stainless steel fiber.
Abstract:
PURPOSE: A method is provided to manufacture a sintered porous stainless steel sheet with gradient pore structures having superior filtering and sound absorption effects using waste byproducts generated when manufacturing stainless steel rods. CONSTITUTION: The method for manufacturing a porous stainless steel sheet with gradient pore structures using waste stainless steel scrap fiber comprises the steps of removing polymer material contained in byproducts of the waste stainless steel scrap fiber generated during the process of producing a stainless steel rod; laying up stainless steel scrap in a stainless steel web shape having a lamellar structure; and adhering each of adjacent portions of the scraps forming the stainless steel web laid up the above step, wherein the polymer material contained in the waste stainless steel scrap fiber is removed with a toluene solution which is mixed with a dispersing agent, the stainless steel scrap is laid up so that a size of the stainless steel scrap is continuously varied in the formation step of the stainless steel web, and the adhesion of the stainless steel scraps onto the adjacent portions is performed through sintering treatment.
Abstract:
PURPOSE: A method for fabricating a Si-Al alloy packaging material is provided to simplify production process, reduce production cost, and control Si content easily by mixing Si and Si-Al powder when producing the Si-Al alloy. CONSTITUTION: Si powder(13) and Al-Si compound power(14) are mixed to produce a compound powder with predetermined Si content, which should be controlled to range from 40 to 90 weight percentage. When Si and Si-Al powder are mixed, total Si content is calculated by adding the weight percentage of pure Si to that of Si in Si-Al compound powder. The mixed compound powder is press-formed while current is applied to it. Plasma arc occurs and packing material with Si content is produced.
Abstract:
PURPOSE: A method is provided to manufacture a sintered porous stainless steel sheet with gradient pore structures having superior filtering and sound absorption effects using waste byproducts generated when manufacturing stainless steel rods. CONSTITUTION: The method for manufacturing a porous stainless steel sheet with gradient pore structures using waste stainless steel scrap fiber comprises the steps of removing polymer material contained in byproducts of the waste stainless steel scrap fiber generated during the process of producing a stainless steel rod; laying up stainless steel scrap in a stainless steel web shape having a lamellar structure; and adhering each of adjacent portions of the scraps forming the stainless steel web laid up the above step, wherein the polymer material contained in the waste stainless steel scrap fiber is removed with a toluene solution which is mixed with a dispersing agent, the stainless steel scrap is laid up so that a size of the stainless steel scrap is continuously varied in the formation step of the stainless steel web, and the adhesion of the stainless steel scraps onto the adjacent portions is performed through sintering treatment.
Abstract:
PURPOSE: A process for producing porous aluminum using pressure-assisted current sintering is provided to effectively control pore size/volume and its microstructure, thereby obtaining porous aluminum having superior filtering and sound absorption effects when it is used as a filter and a sound absorbing material. CONSTITUTION: The process includes: (i) laying up a raw material of aluminum powder, aluminum short staple, or a mixture thereof; (ii) forming the raw material by applying a pressure of 2 to 100 kg/cm¬2 to the laid up raw material; and (iii) directly bonding aluminum powder or short staple by directly supplying power to aluminum green compact using the pressed and power supplied sintering with a voltage of 0.2 to 10 V/cm¬3 and a current of 20 to 500 A/cm¬3 after forming, thereby partially smelting alumina present on the surface of aluminum.
Abstract translation:目的:提供使用压力辅助电流烧结制造多孔铝的方法,以有效地控制孔径/体积及其微结构,从而获得当用作过滤器和吸声材料时具有优异的过滤效果和吸音效果的多孔铝 。 规定:该方法包括:(i)生产铝粉,铝短纤维或其混合物的原料; (ii)通过对所铺设的原料施加2至100kg / cm 2的压力来形成原料; 和(iii)通过使用0.2至10V / cm -3的电压和20至500A / cm 3的电流的压制和供电烧结直接将铝粉末直接供电给铝粉末,直接接合铝粉末或短纤维 成型后,部分地熔融存在于铝表面的氧化铝。
Abstract:
PURPOSE: A method for forming a cobalt boride coating layer on an ion-based metal surface is provided to improve the corrosion resistance, abrasion resistance, and oxidation resistance of steel by an elaborate coating which hardly has a fault, such as pore. CONSTITUTION: A method for forming a cobalt boride coating layer on an ion-based metal surface comprises the following steps of: forming the inner layer of an ion-cobalt boride composition on an ion-based metal surface by using a pack cementation process; forming the outermost layer of the cobalt boride composition on the inner layer by using the pack cementation process; and reducing the activity of Fe in order to suppress the generation of ion-based generation gas by the pack cementation process. The cobalt process pack powder consists of 2 to 60 wt% of cobalt powder, 1 to 10 wt% of NH4Cl powder, and 30 to 97 wt% of Al2O3 powder.