Abstract:
본 발명은 전력 전달 개폐를 위한 MC(Magnetic Contactor) 제어를 ZCS(Zero Current Switching)가 가능하도록 진행하고, 오류 발생시에 급전 장치에서 실시간 모니터링으로 통합제어를 하는 것에 의해 에너지 효율성 및 안정성을 높인 고주파 전력 전달 시스템 및 그의 제어 방법에 관한 것으로, 그 구성은 급전 선로에 고주파 공진 전류를 공급하는 급전 장치;상기 급전 장치에서 공급되는 전력을 급전 트랙으로 공급하기 위하여 급전 트랙으로 나가는 접점과 들어오는 접점을 제어하는 MC(Magnetic Contactor)부;상기 MC(Magnetic Contactor)부의 스위칭에 의해 전력을 공급받는 급전 트랙;을 포함하고,상기 급전 장치는 1차 제어로 MC(Magnetic Contactor) 개폐시에 ZCS(zero current switching)을 하고, 오류 발생시에 2차 제어로 인버터 전력 차단을 수행하는 것이다.
Abstract:
본 발명은 배터리로 충전되는 회생제동 전력과 레귤레이터 충전전력을 회생 제동 기능 on/off를 통해 안정적으로 제어하여 안전성 및 효율성을 높인 비접촉 자기 유도 충전 방식을 갖는 전기자동차의 충전 전력 분배 제어 방법에 관한 것으로, 급전 선로로부터 자기장의 형태로 공급되는 AC 전류를 입력받아 집전하고 자기유도 에너지를 생성하는 단계;레귤레이터로부터 전력공급이 있는지 없는지를 판단하는 단계;레귤레이터로부터 전력공급이 있는 경우에는 회생제동 기능을 off하고 집전된 자기유도 에너지를 구동모터로 공급하여 배터리 충전을 하는 단계;레귤레이터로부터 전력공급이 없는 경우에는 회생제동 기능을 on하고 회생 제동 에너지를 공급하여 배터리 충전을 하는 단계;를 포함한다. 전기자동차, 충전 제어, 비접촉 자기 유도, 양방향 회생제동, 배터리 충전
Abstract:
PURPOSE: A method for constructing a charging and feeding infrastructure is provided to minimize electric energy lost in a system by installing a feeding device which transmits high power at a high load point. CONSTITUTION: A driving load, feeding time, power transmission quantity are produced at each candidate section(S302). The transmission power quantity is compared with a reference value(S303). If the transmission power quantity is larger than the reference value, the charging time for securing a low speed driving is compared with the reference time(S304). A charging device installation section is determined by determining the suitability based on electric energy costs and installation costs(S309).
Abstract:
PURPOSE: A method for controlling a charged power distribution of an electric vehicle of a noncontact electromagnetic inductive charging method is provided to increase the lifetime of a battery by controlling regenerative braking power and regulator charging power through the on/off of a regenerative braking function. CONSTITUTION: It is determined whether surplus energy is generated from electromagnetic inductive energy(S206). A regenerative braking function is off if the surplus power battery is chargeable(S207). The surplus power battery is charged(S208). A regenerative braking function is on if the surplus power battery is not chargeable(S209). A battery is charged by using regenerative braking energy(S210,S211).
Abstract:
PURPOSE: A magnetic field shielding device for a non-contact electromagnetic inductive charging type electric vehicle is provided to improve current collection efficiency by minimizing the leakage of electromagnetic waves and magnetic field to the outside. CONSTITUTION: A feeding unit is buried into a feeding road. The feeding unit is formed with a ferrite core and a primary coil. A current collection unit is installed at a lower part of a vehicle body of an electric vehicle. A shielding member(10) is installed at a vehicle body frame of the electric vehicle. The shielding member blocks the leakage of electromagnetic waves and magnetic field which are generated between the current collection unit and the feeding road.
Abstract:
PURPOSE: A system and method for controlling a current collector for a non-contact electromagnetic inductive charging electric vehicle are provided to supply power to an electric vehicle to charge and efficiently control the current collector which collects currents by magnetic fields generated from a coil embedded in a road. CONSTITUTION: A speed measuring unit(30) measures the speed of a vehicle. A sensor unit(40) senses whether the vehicle is being charged. A distance measuring unit measures the distance between a second coil and a road. A controller(60) determines whether an actuator is driven based on the speed of the vehicle and whether the vehicle is being charged and controls the actuator based on the measured distance.
Abstract:
PURPOSE: A magnetic field shielding device of a non-contact magnetic inductive charging electric vehicle is provided to minimize an electromagnetic wave and a magnetic field from being leaked to the outside, thereby increasing current collecting efficiency. CONSTITUTION: A magnetic field shielding device of a non-contact magnetic inductive charging electric vehicle comprises a current collecting device(5) and a shielding plate(10). The current collecting device is installed in the lower part of the frame of the electric vehicle. The current collecting device generates inductive power by magnetic fields of the power supply device embedded in a power supply road(1). The shielding plate is installed on the current collecting device. The shielding plate prevents an electromagnetic wave and a magnetic field from being leaked to the outside.
Abstract:
PURPOSE: An electric vehicle power supply rail module of a non-contact magnetic induction charging type, road structure using the same, and method for constructing a road are provided to increase energy efficiency by concentrating magnetic fields on a current collecting device. CONSTITUTION: An electric vehicle power supply rail module of a non-contact magnetic induction charging type comprises a power supply line(5), an insulating duct(2), a protection cover(1), and a continuous leakage preventing member(4). The power supply line supplies energy. The insulating duct surrounds the power supply line. The protection cover surrounds an upper part or a side of the insulating duct. The continuous leakage preventing member prevents a magnetic flux from being leaked to the lower part of the insulating duct.
Abstract:
본 발명은 비접촉 자기 유도 충전 방식의 전기자동차용 자기장 차폐장치 및 그 작동방법에 관한 것으로, 본 발명은 전기자동차의 양측면부에 상하로 이동 가능하게 설치되는 차폐부재와, 상기 차폐부재를 상하로 이동시키는 구동수단을 포함하여 구성되어, 차량의 하부에 설치된 집전장치와 급전도로에 매설된 급전장치 간에 발생하는 전자파 및 자기장을 차폐하는 비접촉 자기 유도 충전 방식의 전기자동차용 자기장 차폐장치의 작동방법에 있어서, (a) 차량의 도어의 개폐 여부를 실시간으로 감지하는 단계와; (b) 차량의 도어가 개방된 것으로 감지될 경우, 구동수단을 작동시켜 차폐부재를 하측으로 이동시켜 집전장치 양측면부를 차폐시키는 단계와; (c) 차량의 도어가 폐쇄된 것을 감지될 경우, 구동수단을 작동시켜 차폐부재를 상승시키는 단계를 포함하여 구성된 것을 특징으로 하는 비접촉 자기 유도 충전 방식의 전기자동차용 자기장 차폐장치의 작동방법을 제공한다. 자기 유도 충전, 전기자동차, 집전장치, 자기장, 차폐장치, 도어 연동, 상하이동