Abstract:
Described herein is a method of making a multi-layer article and paint protective films, wherein a mixture comprising a polyurethane coating solution and a plurality of nanoparticles is coated onto a casting liner to form a first layer; and a thermoplastic polyurethane is disposed onto the first layer opposite the casting liner. Multi-layer articles by the process of the present disclosure have been found to be resistant to compositions comprising strong acids and/or a functionalized organosilane.
Abstract:
An adhesive-backed polymeric film assembly that comprises: a polymeric film having one layer or multiple layers, a back surface and a front surface, with an adhesive bonded to the back surface; and a release liner having an outer surface and an inner surface releaseably bonded to the adhesive, wherein the assembly is wound into a roll, with the outer surface of the release liner facing outwardly and the front surface of the polymeric film facing inwardly.
Abstract:
Described herein is a multilayered article and methods of making and using such articles. The multilayered article comprises: · (a) a microsphere layer comprising a plurality of microspheres (11) disposed in a monolayer; · (b) a bead bonding layer (12) comprising a first major surface and a second opposing major surface wherein the plurality of microspheres is at least partially embedded in the first major surface of the bead bonding layer, and wherein the bead bonding layer comprises a thermoset polyurethane, and wherein the thermoset polyurethane is derived from one or more liquid polyols; and · (c) an elastomeric layer (14) disposed on the second opposing major surface of the bead bonding layer.
Abstract:
A display system including a lightguide and first and second reflective layers disposed on opposite sides of the lightguide is provided. The lightguide has opposing first and second major surfaces and includes a light extraction pattern for extracting light that would otherwise be confined and propagate within the lightguide primarily by total internal reflection. Light extracted by the light extraction pattern exits the lightguide through at least one of the first and second major surfaces of the lightguide. Each of the first and second reflective layers has an average specular reflectance of at least 50% in a predetermined wavelength range. The light extraction pattern may be repeatedly imaged by the first and second reflective layers to produce three-dimensional stacked images of the light extraction pattern.
Abstract:
The disclosed aliphatic thermoplastic polyurethane composition is well suited for use in thin, flexible light directing articles to impart flexibility, toughness, or protection to the light directing articles that contain optically active elements. The disclosed aliphatic thermoplastic polyurethanes have improved thermostability at higher temperatures. Specifically, the disclosed aliphatic thermoplastic polyurethanes have a cross-over temperature greater than 110° C. In one embodiment, the cross-over temperature is greater than 130° C. In one embodiment, the cross-over temperature is less than 170° C. and a Tg greater than 35° C. and less than 70° C.
Abstract:
Disclosed herein are improved thermoplastic polyurethane compositions, articles, and related methods. These compositions include aliphatic thermoplastic polyurethanes having a hard segment content ranging from 57 percent to 80 percent by weight. The hard coat compositions have a Shore D hardness of at least 70 and can display an Elongation at Break test result at 25 degrees Celsius of at least 150 percent. These materials, when hardened, can serve decorative and/or protective functions while displaying both a high degree of elongation at moderate temperatures and high hardness.
Abstract:
A pressure sensitive adhesive composition includes a polyurethane polymer that includes the reaction product of a polyisocyanate component and a polyol component. The polyol component has a total solubility parameter ranging from 10 to 14 (cal/cm3)1/2.
Abstract:
Provided compositions, films, and methods impart a low-surface energy surface to a polyurethane layer whereby contaminants to bead up on the surface to dramatically facilitate removal. At the same time, the provided articles retain excellent clarity and processibility for use in surface protection applications. Compositions having these advantageous properties derive from reacting a primary polyisocyanate; a monohydroxyl polydimethylsiloxane present in a suitable amount; and a polyol selected from the group consisting of: a caprolactone polyol, polycarbonate polyol, a polyester polyol, acrylic polyol, polyether polyol, polyolefin polyol, and mixtures thereof.
Abstract:
Multilayer articles comprise a thermoformable substrate, a base layer, and an optional transparent protective layer. Methods of making and using the paint film composites, and shaped articles made thereby, are also disclosed.
Abstract:
Described herein is a pressure sensitive adhesive comprising a polyurethane polymer derived from a polyester polyol and a polyisocyanate component, wherein the polyester polyol, which is derived from a first reaction product of (a) a Component A, wherein the Component A is a phthalic acid, a phthalic anhydride or mixtures thereof, (b) a Component B, wherein the Component B is a dimer fatty acid, a dimer fatty acid diol or mixtures thereof, and (c) a Component C, wherein the Component C is an aliphatic diol, an aromatic diol, or mixtures thereof, wherein Component C comprises 2 to 10 carbon atoms and optionally catenated heteroatoms selected from O, S, and N. Also disclosed herein are polyurethane polymers and pressure sensitive adhesives made from the polyurethane polymers or the polyester polyols.