Abstract:
Verfahren zum Erzeugen einer integrierten HPLC-Säule oder gaschromatographischen Kapillarsäule in einem Titansubstrat (120), das folgende Schritte aufweist: Abscheiden einer Hartmaskenschicht (415) auf dem Titansubstrat (120); Aufbringen einer Fotoresistschicht (420) auf die Hartmaskenschicht (415); Strukturieren der Fotoresistschicht (420); Durchführen einer RIE-Ätzung auf der maskierten Hartmaskenschicht (415), um eine in Form der integrierten HPLC-Säule oder gaschromatographischen Kapillarsäule strukturierte Hartmaske zu bilden, wobei die Form gebogene Abschnitte umfasst; Entfernen der strukturierten Fotoresistschicht (420); Ätzen der integrierten HPLC-Säule oder gaschromatographischen Kapillarsäule durch die Hartmaske und in, aber nicht durch das Titansubstrat (120) unter Verwendung einer DRIE-Ätzung; Bereitstellen einer Titanlage (110); und Anbringen der Titanlage (110) an dem Titansubstrat (120) unter Verwendung einer Diffusionsverbindung.
Abstract:
In some embodiments of the present invention, the buried silicon oxide technology is employed in the fabrication of fluid channels, particularly nanochannels. For example, a fluid channel can be made in a buried silicon oxide layer by etching the buried oxide layer with a method that selectively removes silicon oxide but not silicon. Thus, one dimension of the resulting fluid channel is limited by the thickness of the buried oxide layer. It is possible to manufacture a very thin buried oxide layer with great precision, thus a nanochannel can be fabricated in a controlled manner. Moreover, in addition to buried oxide, any pairs of substances with a high etch ratio with respect to each other can be used in the same way. Further provided are the fluid channels, apparatuses, devices and systems comprising the fluid channels, and uses thereof.
Abstract:
A switch (100) comprises an input contact (121) and at least one output contact (122), a single droplet (130) of conductive liquid located in a channel (120), the droplet (130) being in constant contact with the input contact (121), and a heater (104) configured to heat a gas (135). The heated gas expands to cause the droplet (130) to translate through the channel (120).
Abstract:
An electronic switch (300) comprises a droplet (310) of conductive liquid located in contact with a surface (312) having an alterable surface configuration, an input contact (324) located on the alterable surface and configured such that the input contact (324) is in constant electrical contact with the droplet (310), and a micro-electronic mechanical system (MEMS) (304) for altering the surface configuration to change the contact angle of the droplet (310) with respect to the surface (312).