Abstract:
This disclosure relates to performing cellular communication in unlicensed spectrum using a flexible slot structure. A cellular base station may perform a listen-before-talk procedure, and may transmit a reservation frame when the listen-before-talk procedure is successful. The reservation frame may reserve a wireless medium for a transmit opportunity. Transmission slots may be scheduled for communication with one or more wireless devices during the transmit opportunity. The transmission slots may be selected from multiple possible uplink transmission slot types and multiple possible downlink transmission slot types. Indications of the scheduled transmission slots, including indications of slot types of the scheduled transmission slots, may be provided to the wireless devices. Wireless communication may be performed between the cellular base station and the wireless devices according to the scheduled transmission slots.
Abstract:
This disclosure relates to aggregation of radio resources provided according to multiple radio interfaces. According to some embodiments, a base station may establish a radio bearer with a wireless user equipment (UE) device. The radio bearer may initially utilize a first radio interface between the base station and the UE. The base station may receive an indication to aggregate radio resources of an access point that utilizes a second radio interface for the UE. Based on the indication to aggregate radio resources for the UE, the base station may redirect at least a portion of data of the radio bearer by way of the access point to be exchanged with the UE using the second radio interface.
Abstract:
This disclosure relates to temporary suspension, and subsequent resumption, of radio resource aggregation in a wireless communication system. A wireless device may establish a communication link with a base station. The communication link with the base station may aggregate radio resources according to a first wireless communication technology and a second wireless communication technology. Use by the communication link of radio resources according to the second wireless communication technology may be suspended. Wireless communication activity according to the second wireless communication technology that is not associated with the communication link may be performed while use by the communication link of radio resources according to the second wireless communication technology is suspended. Use by the communication link of radio resources according to the second wireless communication technology may be resumed after performing the wireless communication activity according to the second wireless communication technology.
Abstract:
This disclosure relates to using a wake up signal in conjunction with cellular communication in unlicensed spectrum. A cellular base station may provide a wake up signal on an unlicensed frequency channel after successful completion of a listen-before-talk procedure. The wake up signal may include a preamble configured for coherent detection, and information indicating channel occupancy time for a cellular communication by the cellular base station and a cell identifier for the cellular base station. A wireless device may monitor the unlicensed frequency channel for a wake up signal, and may determine whether to monitor the unlicensed frequency channel for control channel signaling based on whether a wake up signal is received, and potentially also based on the contents of the wake up signal if a wake up signal is received.
Abstract:
A network controller, a user equipment (UE) device, and associated methods for conducting intelligent enhanced multimedia broadcast multicast services (eMBMS). A network controller receives user preference information and location information from a plurality of UEs. The network controller selects one or more data packages to transmit using eMBMS in one or more broadcast regions based on the user preference information and the location information. The one or more data packages may comprise an updated machine learning model in a distributed learning application. The network controller provides an indication to a remote device to broadcast the one or more data packages in the respective one or more broadcast regions using eMBMS.
Abstract:
Apparatuses, systems, and methods to perform attachment of a wireless device to substantially concurrent connections with a next generation network node and a legacy network node. The wireless device may be configured to transmit a request to attach to a first network node operating according to the first RAT and transmit an indication that the wireless device is capable of maintaining substantially concurrent connections with the first network node and a second network node that operates according to the second RAT. The wireless device may also be configured transmit a request to attach to the second network node. The request may include an indication that the wireless device is capable of maintaining substantially concurrent connections with the first and second network nodes. Further, the wireless device may be configured to receive an indication that dual connectivity with the first and second network nodes has been established.
Abstract:
A base station is disclosed that may communicate with a wireless device such as a user equipment (UE) using a dynamic frame structure. The base station may transmit control information on a control channel that dynamically specifies a first transmit time interval between control channel transmissions. The duration of the first transmit time interval may be determined based at least in part on a type of service executing on the UE, wherein the type of service may comprise one of machine type communications (MTC), enhanced mobile broadband (eMBB), and critical machine applications.
Abstract:
A wireless communication device may conduct first wireless communications over a first frequency band according to a first radio access technology (RAT), and may detect second wireless communications conducted over the first frequency band according to a second RAT while the wireless communication device is conducting the first wireless communications. The wireless communication device may then adjust characteristics and/or parameters associated with the first wireless communications based on the detected second wireless communications. In a specific example, a wireless communication device conducting Wi Fi communications in the 5 GHz band may detect cellular communications (e.g. LAA/LTE-U communications) also conducted in the 5 GHz band while the wireless communication device is conducting the Wi Fi communications. The wireless communication device may then adjust characteristics and/or parameters associated with its Wi Fi communications based on the detected signals/frequencies of the cellular (LAA/LTE-U) communications.
Abstract:
In at least some embodiments, a method, apparatus, and system for performing communication using a plurality of radio access technologies (RATs) including a cellular RAT and a short-range RAT. A mobile device may be configured to receive information regarding traffic steering, i.e., cellular / short-range RAT handover, from nearby short-range access points and/or from a cellular base station. The mobile device may generate or determine mobility information of the mobile device, which indicates an amount of movement of the mobile device. The mobile device may determine whether the mobile device should transition between the cellular RAT and the short-range RAT based at least in part on the traffic-steering information and the mobility information. The mobile device may selectively transition between the cellular RAT and the short-range RAT based on the determination.
Abstract:
Apparatus and methods for time division based communication between a wireless device and a wireless network in a licensed radio frequency (RF) band and an unlicensed RF band are disclosed. The wireless device receives downlink control information (DCI), via a primary component carrier (PCC) of a primary cell (Pcell) in the licensed RF band, indicating downlink (DL) data transmission via a secondary component carrier (SCC) of a secondary cell (Scell) in the unlicensed RF band. The wireless device receives via the SCC part of the DL data transmission and transmits a control message via the PCC in response. The wireless device sends a scheduling request (SR) to the eNodeB and receives uplink (UL) transmission opportunities in a combination of the licensed RF band and the unlicensed RF band. The wireless device performs a clear channel assessment before reserving and transmitting to the eNodeB in the unlicensed RF band.