Abstract:
A network controller, a user equipment (UE) device, and associated methods for conducting intelligent enhanced multimedia broadcast multicast services (eMBMS). A network controller receives user preference information and location information from a plurality of UEs. The network controller selects one or more data packages to transmit using eMBMS in one or more broadcast regions based on the user preference information and the location information. The one or more data packages may comprise an updated machine learning model in a distributed learning application. The network controller provides an indication to a remote device to broadcast the one or more data packages in the respective one or more broadcast regions using eMBMS.
Abstract:
Embodiments described herein relate to managing access to 5G cellular baseband resources for 5G-capable wireless devices. A wireless device can monitor application workloads by analyzing communication network performance requirements for a given application in-use or launching for future use along with system-level indications of overall device usage, battery level, and mobility status to determine whether access to 5G cellular baseband resources is recommended for an application. A 5G cellular baseband resource recommendation is provided for an application indicating a level of bandwidth in current use or expected for future use as well as a confidence metric in the bandwidth level indication. The 5G cellular baseband resource recommendation is used with additional device criteria to determine whether access to one or more 5G radio frequency bands is allowed.
Abstract:
System and methods for providing special radio provisions to link budget limited devices. Before establishing a cellular connection with a cellular network, a user equipment device (UE), such as a link budget limited UE, may negotiate the special radio provisions with the network by presenting requested profile information to the network, and receiving back approved profile information from the network. The UE may perform these communications either directly, via a non-cellular communication connection with the network, or indirectly, via a companion or proxy device. When the UE initiates a cellular connection with the network, both entities may use information specified in the approved profile information, which may improve efficiency of the connection. In some scenarios, the approved profile information may identify a class of devices to which the UE belongs. The approved profile information may also be used in establishing connections with other devices of the same class.
Abstract:
Apparatuses, systems, and methods for performing efficient discovery of edge computing servers. A wireless device may provide an edge compute request to an edge discovery service, which may indicate one or more criteria for the edge compute request. The edge discovery service may select one or more edge application servers for the edge compute request based on edge compute resource availability profile information that it stores for multiple edge application servers and the one or more criteria for the edge compute request. The edge discovery service may provide a response to the edge compute request to the wireless device, which may include an indication of the selected edge application server or servers.
Abstract:
This disclosure relates to dynamic baseband management for a wireless device. The wireless device may be an accessory device. The accessory device may determine whether it has a short-range wireless communication link with a companion device. The accessory device may determine one or more proximity metrics relating to the companion device. The accessory device may further determine one or more metrics associated with user settings, user activity and/or application activity at the wireless device. The wireless device may select a (e.g., full, limited, or off) baseband operating mode based on any or all of these considerations.
Abstract:
Some embodiments relate to methods for provisioning a secondary wireless device with an eSIM for wireless communication and activating multi-SIM functionality between the secondary wireless device and a primary wireless device having a subscribed SIM. The primary wireless device may act as a proxy in obtaining the eSIM for the secondary wireless device. The primary wireless device may then provide, to the cellular network, identifiers of the SIMs of the primary and secondary wireless devices. The primary wireless device may then request initiation of multi-SIM functionality for the two SIMs, and receive an indication that the multi-SIM functionality has been initiated. As an example, the multi-SIM functionality may be implemented by mapping the SIM of the primary wireless device and the SIM of the secondary wireless device (e.g., the provisioned eSIM) to the same Mobile Directory Number (MDN).
Abstract:
System and methods for providing special radio provisions to link budget limited devices. Before establishing a cellular connection with a cellular network, a user equipment device (UE), such as a link budget limited UE, may negotiate the special radio provisions with the network by presenting requested profile information to the network, and receiving back approved profile information from the network. The UE may perform these communications either directly, via a non-cellular communication connection with the network, or indirectly, via a companion or proxy device. When the UE initiates a cellular connection with the network, both entities may use information specified in the approved profile information, which may improve efficiency of the connection. In some scenarios, the approved profile information may identify a class of devices to which the UE belongs. The approved profile information may also be used in establishing connections with other devices of the same class.
Abstract:
Apparatus and methods to support authentication failure handling by network elements and by a wireless communication device when attempting access to services through non-cellular wireless access networks, such as WLAN networks, by the wireless communication device are disclosed. Error messages received (606) from evolved packet core (EPC) network elements, such as an authentication, authorization, and accounting (AAA) server, are mapped (608) to failure messages provided to wireless communication devices by internetworking equipment, such as an evolved packet data gateway (ePDG). The wireless communication device determines a failures cause based on the failure messages and disallows retry attempts until select criteria are satisfied (610).
Abstract:
Apparatuses, systems, and methods for emergency communications (e.g., voice calls and/or SMS messages) for UE's without cellular coverage (e.g., in non-cellular coverage). A function of a core network may receive, from a relay UE, a request to establish an SOS APN for a host UE, where the request may include at least an approximate location of the host UE, and where the host UE may be out of range of cellular service. The function of the core network may route, based, at least in part, on the approximate location of the host UE, traffic to a PSAP with a coverage area that includes the approximate location of the host UE using the established SOS APN. The approximate location of the host UE may be based, at least in part, on a location of the relay UE.