Abstract:
Methods and apparatus for performing an inline rotation of an image. The apparatus includes a rotation unit for reading pixels from a source image in an order based on a specified rotation to be performed. The source image is partitioned into multiple tiles, the tiles are processed based on where they will be located within the rotated image, and each tile is stored in a tile buffer. The target pixel addresses within a tile buffer are calculated and stored in a lookup table, and when the pixels are retrieved from the source image by the rotation unit, the lookup table is read to determine where to write the pixels within a corresponding tile buffer.
Abstract:
An electronic device may generate content that is to be displayed on a display. The display may have an array of liquid crystal display pixels for displaying image frames of the content. The image frames may be displayed with positive and negative polarities to help reduce charge accumulation effects. A charge accumulation tracker may analyze the image frames to determine when there is a risk of excess charge accumulation. The charge accumulation tracker may analyze information on gray levels, frame duration, and frame polarity. The charge accumulation tracker may compute a charge accumulation metric for entire image frames or may process subregions of each frame separately. When subregions are processed separately, each subregion may be individually monitored for a risk of excess charge accumulation.
Abstract:
An interface emulator for an IC is disclosed. An interface emulator includes a first first-in, first-out memory (FIFO) and a second FIFO. The first FIFO is coupled to receive data from an access port and a second FIFO coupled to receive data from at least one functional unit in the IC. The access port may be coupled to a device that is external to the IC. The external device may write information into the first FIFO, and this information may subsequently be read by a functional unit in the IC. Similarly, the functional unit may write information into the second FIFO, with the external device subsequently reading the information. Information may be written into the FIFOs in accordance with a predefined protocol. Thus, a particular type of interface may be emulated even though the physical connection and supporting circuitry for that interface is not otherwise implemented in the IC.
Abstract:
In an embodiment, a host computing device (10) includes an internal display (12) and also includes a connector (18) to connect to an external display (16). A cable (14) is provided to connect to the connector and to connect to the external display. The cable includes video processing capabilities (24). For example, the cable may include a memory configured to store a frame buffer. The frame buffer may store a frame of video data for further processing by the video processing device in the cable. The video processing device may manipulate the frame in a variety of ways, e.g. scaling, rotating, gamma correction, dither correction, etc.
Abstract:
A graphics processing circuit and method for power savings in the same is disclosed. In one embodiment, a graphics processing circuit includes a number of channels. The number of channels includes a number of color component channels that are each configured to process color components of pixel values of an incoming frame of graphics information. The number of channels also includes an alpha scaling channel configured to process alpha values (indicative of a level of transparency) for the incoming and/or outgoing frames. The graphics processing circuit also includes a control circuit. The control circuit is configured to place the alpha scaling channel into a low-power state responsive to determining that at least one of the incoming or outgoing frames does not include alpha values.
Abstract:
In an embodiment, one or more fabric control circuits may be inserted in a communication fabric to control various aspects of the communications by components in the system. The fabric control circuits may be included on the interface of the components to the communication fabric, in some embodiments. In other embodiments that include a hierarchical communication fabric, fabric control circuits may alternatively or additionally be included. The fabric control circuits may be programmable, and thus may provide the ability to tune the communication fabric to meet performance and/or functionality goals.
Abstract:
Devices and methods for reducing and/or substantially eliminating pixel charge imbalance due to variable refresh rates are provided. By way of example, a method includes providing a first frame of image data via a processor to a plurality of pixels of the display during a first frame period corresponding to a first refresh rate, and providing a second frame of image data to the plurality of pixels of the display during a second frame period corresponding to a second refresh rate. The method further includes dividing the first frame period into a first frame sub-period and a second frame sub-period, and driving the plurality of pixels of the display with the first frame of image data during the first frame sub-period and the second frame sub-period.
Abstract:
In an embodiment, a system on a chip (SOC) includes a component that remains powered when the remainder of the SOC is powered off. The component may include a sensor capture unit to capture data from various device sensors, and may filter the captured sensor data. Responsive to the filtering, the component may wake up the remainder of the SOC to permit the processing. The component may store programmable configuration data, matching the state at the time the SOC was most recently powered down, for the other components of the SOC, in order to reprogram them after wakeup. In some embodiments, the component may be configured to wake up the memory controller within the SOC and the path to the memory controller, in order to write the data to memory. The remainder of the SOC may remain powered down.
Abstract:
In an embodiment, a display pipe is configured to composite one or more frames of images and/or video sequences to generate output frames for display. Additionally, the display pipe may be configured to compress an output frame and write the compressed frame to memory responsive to detecting static content in the output frames is detected. The display pipe may also be configured to read the compressed frame from memory for display instead of reading the frames for compositing and display. In some embodiments, the display pipe may include an idle screen detect circuit configured to monitor the operation of the display pipe and/or the output frames to detect the static content.
Abstract:
In an embodiment, a display pipe is configured to composite one or more frames of images and/or video sequences to generate output frames for display. Additionally, the display pipe may be configured to compress an output frame and write the compressed frame to memory responsive to detecting static content in the output frames is detected. The display pipe may also be configured to read the compressed frame from memory for display instead of reading the frames for compositing and display. In some embodiments, the display pipe may include an idle screen detect circuit configured to monitor the operation of the display pipe and/or the output frames to detect the static content.