Abstract:
In an embodiment, a system on a chip (SOC) includes a component that remains powered when the remainder of the SOC is powered off. The component may include a sensor capture unit to capture data from various device sensors, and may filter the captured sensor data. Responsive to the filtering, the component may wake up the remainder of the SOC to permit the processing. The component may store programmable configuration data, matching the state at the time the SOC was most recently powered down, for the other components of the SOC, in order to reprogram them after wakeup. In some embodiments, the component may be configured to wake up the memory controller within the SOC and the path to the memory controller, in order to write the data to memory. The remainder of the SOC may remain powered down.
Abstract:
Methods and apparatus for managing connections between multiple internal integrated circuits (ICs) of, for example, a high-speed internal device interface. Improved schemes for coordination of connection and disconnection events, and/or suspension and resumption of operation for a High-Speed Inter-Chip TM (HSIC) interface are disclosed. In one exemplary embodiment, a "device"-initiated and "host'-initiated connect/disconnect procedure is disclosed, that provides improved timing, synchronization, and power consumption.
Abstract:
A communication link between a host device and a client device can be suspended based on a suspend request or notification provided by the client device. The suspend request can be transmitted by a client device to a host device if the client device determines that suspension is appropriate, and can be sent in response to receiving a polling request from the host device. After receiving a suspend request, the host device can initiate an operation to suspend the communication link between the devices.
Abstract:
In an embodiment, a system on a chip (SOC) includes a component that remains powered when the remainder of the SOC is powered off. The component may include a sensor capture unit to capture data from various device sensors, and may filter the captured sensor data. Responsive to the filtering, the component may wake up the remainder of the SOC to permit the processing. The component may store programmable configuration data, matching the state at the time the SOC was most recently powered down, for the other components of the SOC, in order to reprogram them after wakeup. In some embodiments, the component may be configured to wake up the memory controller within the SOC and the path to the memory controller, in order to write the data to memory. The remainder of the SOC may remain powered down.
Abstract:
A host/peripheral local interconnect that is compatible with a self- configurable peripheral device is described. According to processes discussed herein, the peripheral device is self-configured. The host device may be kept aware of the self-configured state of the peripheral device, and/or self-configured changes made at the peripheral device. The host device may scale its applications/uses of the peripheral device in light of such awareness.
Abstract:
A host/peripheral local interconnect that is compatible with a self- configurable peripheral device is described. According to processes discussed herein, the peripheral device is self-configured. The host device may be kept aware of the self-configured state of the peripheral device, and/or self-configured changes made at the peripheral device. The host device may scale its applications/uses of the peripheral device in light of such awareness.
Abstract:
In an embodiment, a system on a chip (SOC) includes a component that remains powered when the remainder of the SOC is powered off. The component may include a sensor capture unit to capture data from various device sensors, and may filter the captured sensor data. Responsive to the filtering, the component may wake up the remainder of the SOC to permit the processing. The component may store programmable configuration data, matching the state at the time the SOC was most recently powered down, for the other components of the SOC, in order to reprogram them after wakeup. In some embodiments, the component may be configured to wake up the memory controller within the SOC and the path to the memory controller, in order to write the data to memory. The remainder of the SOC may remain powered down.
Abstract:
In an embodiment, a system on a chip (SOC) includes a component that remains powered when the remainder of the SOC is powered off. The component may include a sensor capture unit to capture data from various device sensors, and may filter the captured sensor data. Responsive to the filtering, the component may wake up the remainder of the SOC to permit the processing. The component may store programmable configuration data, matching the state at the time the SOC was most recently powered down, for the other components of the SOC, in order to reprogram them after wakeup. In some embodiments, the component may be configured to wake up the memory controller within the SOC and the path to the memory controller, in order to write the data to memory. The remainder of the SOC may remain powered down.
Abstract:
Methods and apparatus for managing connections between multiple internal integrated circuits (ICs) of, for example, a high-speed internal device interface. Improved schemes for coordination of connection and disconnection events, and/or suspension and resumption of operation for a High-Speed Inter-Chip TM (HSIC) interface are disclosed. In one exemplary embodiment, a "device"-initiated and "host'-initiated connect/disconnect procedure is disclosed, that provides improved timing, synchronization, and power consumption.