Abstract:
Embodiments of a drain in a lithographic projection apparatus are described that have, for example, a feature which reduces inflow of gas into the drain during a period when no liquid is present in the drain. In one example, a passive liquid removal mechanism is provided such that the pressure of gas in the drain is equal to the ambient gas pressure and in another embodiment a flap is provided to close off a chamber during times when no liquid needs removing.
Abstract:
A lithographic apparatus has a compartment which accommodates a movable object. Movements of the movable object cause acoustic disturbances in the compartment. An acoustic damper is arranged to damp the acoustic disturbances in the compartment and comprises a chamber (100) in communication with the compartment and a perforated plate (101), having a plurality of Cthrough-holes (102), between the chamber and the compartment.
Abstract:
A gas knife configured to dry a surface in an immersion lithographic apparatus is optimized to remove liquid by ensuring that a pressure gradient is built up in the liquid film on the surface being dried.
Abstract:
A lithographic apparatus includes: an object that is moveable in at least one direction; a control system to move the object in the at least one direction, wherein the control system is arranged to control movement of the object in the at least one direction in a frequency range of interest; and a conduit provided with a fluid, wherein the conduit is arranged on or in the object in a pattern, and wherein the pattern is such that an acceleration of the object in the at least one direction causes an acceleration pressure profile in the fluid along the conduit, the acceleration pressure profile not matching with a resonance pressure profile that corresponds to a standing wave mode in the fluid with a resonance frequency in the frequency range of interest.
Abstract:
An immersion lithographic apparatus is described in which a two-phase flow is separated into liquid-rich and gas-rich flows by causing the liquid-rich flow to preferentially flow along a surface.
Abstract:
An immersion lithographic apparatus typically includes a fluid handling system. The fluid handling system generally has a two-phase fluid extraction system configured to remove a mixture of gas and liquid from a given location. Because the extraction fluid comprises two phases, the pressure in the extraction system can vary. This pressure variation can be passed through the immersion liquid and cause inaccuracy in the exposure. To reduce the pressure fluctuation in the extraction system, a buffer chamber may be used. This buffer chamber may be connected to the fluid extraction system in order to provide a volume of gas which reduces pressure fluctuation. Alternatively or additionally, a flexible wall may be provided somewhere in the fluid extraction system. The flexible wall may change shape in response to a pressure change in the fluid extraction system. By changing shape, the flexible wall can help to reduce, or eliminate, the pressure fluctuation.
Abstract:
Embodiments of a drain in a lithographic projection apparatus are described that have, for example, a feature which reduces inflow of gas into the drain during a period when no liquid is present in the drain. In one example, a passive liquid removal mechanism is provided such that the pressure of gas in the drain is equal to the ambient gas pressure and in another embodiment a flap is provided to close off a chamber during times when no liquid needs removing.
Abstract:
A porous member is used in a liquid removal system of an immersion lithographic projection apparatus to smooth uneven flows. A pressure differential across the porous member may be maintained at below the bubble point of the porous member so that a single-phase liquid flow is obtained. Alternatively, the porous member may be used to reduce unevenness in a two-phase flow.
Abstract:
An immersion lithographic apparatus is disclosed in which at least a part of the liquid supply system (which provides liquid between the projection system and the substrate) is moveable in a plane substantially parallel to a top surface of the substrate during scanning. The part is moved to reduce the relative velocity between that part and the substrate so that the speed at which the substrate may be moved relative to the projection system may be increased.
Abstract:
An immersion lithographic apparatus is described in which a two-phase flow is separated into liquid-rich and gas-rich flows by causing the liquid-rich flow to preferentially flow along a surface.