Abstract:
According to one embodiment of the present invention, a programmable light source comprises one or more semiconductor lasers, a wavelength conversion device, and a laser controller. The controller is programmed to operate the semiconductor laser using a modulated feedback control signal. The wavelength control signal is adjusted based on the results of a comparison of a detected intensity signal with a feedback signal to align the lasing wavelength with the conversion efficiency peak of the wavelength conversion device. Laser controllers and projections systems operating according to the control concepts of the present invention are also provided.
Abstract:
An optical source including a laser source and a waveguide is provided. The laser source includes a laser cavity having a laser optical path length extending from a DBR grating to a reflective laser output facet, and emits an output beam at a fundamental wavelength. The waveguide includes an input facet and an output face. The waveguide extends along a waveguide optical length from the input facet of the waveguide to the output facet of the waveguide, and the waveguide is optically coupled to the laser source, thereby forming an external cavity having an optical path length extending from the reflective laser output facet to the input facet of the waveguide that is substantially equal to the laser optical path length.
Abstract:
An optical interrogation system is described herein that can interrogate a label-independent-detection (LID) biosensor and monitor a biological event on top of the biosensor without suffering from problematical parasitic reflections and/or problematical pixelation effects. In one embodiment, the optical interrogation system is capable of interrogating a biosensor and using a low pass filter algorithm to digitally remove problematic parasitic reflections contained in the spectrum of an optical resonance which makes it easier to determine whether or not a biological event occurred on the biosensor. In another embodiment, the optical interrogation system is capable of interrogating a biosensor and using an oversampling/smoothing algorithm to reduce oscillations in the estimated location of an optical resonance caused by the problematical pixelation effect which makes it easier to determine whether or not a biological event occurred on the biosensor.
Abstract:
According to one embodiment of the present invention, an optical package comprises one or more semiconductor lasers coupled to a wavelength conversion device with adaptive optics. The optical package also comprises a package controller programmed to operate the semiconductor laser and the adaptive optics based on modulated feedback control signals supplied to the wavelength selective section of the semiconductor laser and the adaptive optics. The wavelength control signal supplied to the wavelength selective section of the semiconductor laser may be adjusted based on the modulated wavelength feedback control signal such that the response parameter of the wavelength conversion device is optimized. Similarly, the position control signals supplied to the adaptive optics may be adjusted based on the modulated feedback position control signals such that the response parameter of the wavelength conversion device is optimized.
Abstract:
Particular embodiments of the present invention relate generally to altering the effective conversion efficiency curve of an optical package employing a semiconductor laser and an SHG crystal or other type of wavelength conversion device. For example, according to one embodiment of the present invention, a method of controlling an optical package is provided where the optical package is tuned such that ascending portions of a transmission curve representing a spectral filter are aligned with descending portions of a conversion efficiency curve representing a wavelength conversion device. With the filter and wavelength conversion device so aligned, the optical package is further tuned such that the wavelength of the fundamental laser signal lies within a wavelength range corresponding to aligned portions of the ascending and descending portions of the transmission and conversion efficiency curves. Additional embodiments are disclosed and claimed.
Abstract:
Disclosed herein are glass light guide plates comprising a first surface, an opposing second surface, and a thickness extending therebetween; and a side edge comprising a plurality of arch-shaped recesses. Display devices comprising such light guides are also disclosed herein as well as methods for producing such light guides.