Apparatuses and methods for processing an optical fiber preform

    公开(公告)号:US11584679B2

    公开(公告)日:2023-02-21

    申请号:US17114982

    申请日:2020-12-08

    Abstract: Apparatuses and methods for processing an optical fiber preform are disclosed. According to one aspect, an apparatus may generally include a muffle defining an interior volume enclosed by at least one sidewall and a handle assembly for supporting the optical fiber preform in the muffle. The handle assembly may be removably coupled to the muffle and extend into the interior volume. At least one baffle may be positioned in the interior volume and define an upper portion of the interior volume and a lower portion of the interior volume. The at least one baffle may define at least one flow channel between the upper portion of the interior volume and the lower portion of the interior volume.

    Halogen-doped silica preforms for optical fibers

    公开(公告)号:US11198635B2

    公开(公告)日:2021-12-14

    申请号:US16529123

    申请日:2019-08-01

    Abstract: Preparation of halogen-doped silica is described. The preparation includes doping silica with high halogen concentration and sintering halogen-doped silica to a closed-pore state in a gas-phase environment that has a low partial pressure of impermeable gases. Impermeable gases are difficult to remove from halogen-doped fiber preforms and lead to defects in optical fibers drawn from the preforms. A low partial pressure of impermeable gases in the sintering environment leads to a low concentration of impermeable gases and a low density of gas-phase voids in densified halogen-doped silica. Preforms with fewer defects result.

    Halogen-doped silica for optical fiber preforms

    公开(公告)号:US10947149B2

    公开(公告)日:2021-03-16

    申请号:US16167830

    申请日:2018-10-23

    Abstract: Preparation of halogen-doped silica is described. The preparation includes doping silica with high halogen concentration and sintering halogen-doped silica to a closed-pore state. The sintering includes a high pressure sintering treatment and a low pressure sintering treatment. The high pressure sintering treatment is conducted in the presence of a high partial pressure of a gas-phase halogen doping precursor and densifies a silica soot body to a partially consolidated state. The low pressure sintering treatment is conducted in the presence of a low partial pressure of gas-phase halogen doping precursor and transforms a partially consolidated silica body to a closed-pore state. The product halogen-doped silica glass exhibits little foaming when heated to form fibers in a draw process or core canes in a redraw process.

    Low diameter optical fiber
    19.
    发明授权
    Low diameter optical fiber 有权
    低直径光纤

    公开(公告)号:US09057817B2

    公开(公告)日:2015-06-16

    申请号:US13862755

    申请日:2013-04-15

    Abstract: Small-radius coated optical fibers having large mode field diameter and low bending losses. The coated fiber may have an outer radius of 110 μm or less, while providing a mode field diameter of 9.0 μm or greater and a bending loss when wrapped about a 15 mm mandrel of 0.5 dB/km or less at wavelength of 1550 nm. The coated fiber may have a mode field diameter of 9.2 μm or greater and may have a bending loss at 1550 nm of 0.25 dB/km or less when wrapped about a 20 mm mandrel or a bending loss at 1550 nm of 0.02 dB/km or less when wrapped about a 30 mm mandrel.

    Abstract translation: 具有大模场直径和低弯曲损耗的小半径涂覆光纤。 涂覆的光纤可以具有110μm或更小的外半径,同时提供9.0μm或更大的模场直径和在1550nm波长下缠绕在0.5dB / km或更小的15mm心轴周围时的弯曲损耗。 涂覆的光纤可以具有9.2μm或更大的模场直径,并且当缠绕在20mm心轴上时在1550nm处的弯曲损耗为0.25dB / km或更小,或者在1550nm处的弯曲损耗为0.02dB / km或 当缠绕在30毫米心轴上时较少。

    LOW DIAMETER OPTICAL FIBER
    20.
    发明申请
    LOW DIAMETER OPTICAL FIBER 有权
    低直径光纤

    公开(公告)号:US20140308015A1

    公开(公告)日:2014-10-16

    申请号:US13862755

    申请日:2013-04-15

    Abstract: Small-radius coated optical fibers having large mode field diameter and low bending losses. The coated fiber may have an outer radius of 110 μm or less, while providing a mode field diameter of 9.0 μm or greater and a bending loss when wrapped about a 15 mm mandrel of 0.5 dB/km or less at wavelength of 1550 nm. The coated fiber may have a mode field diameter of 9.2 μm or greater and may have a bending loss at 1550 nm of 0.25 dB/km or less when wrapped about a 20 mm mandrel or a bending loss at 1550 nm of 0.02 dB/km or less when wrapped about a 30 mm mandrel.

    Abstract translation: 具有大模场直径和低弯曲损耗的小半径涂覆光纤。 涂覆的光纤可以具有110μm或更小的外半径,同时提供9.0μm或更大的模场直径和在1550nm波长下缠绕在0.5dB / km或更小的15mm心轴周围时的弯曲损耗。 涂覆的光纤可以具有9.2μm或更大的模场直径,并且当缠绕在20mm心轴上时在1550nm处的弯曲损耗为0.25dB / km或更小,或者在1550nm处的弯曲损耗为0.02dB / km或 当缠绕在30毫米心轴上时较少。

Patent Agency Ranking