Abstract:
A system (2) for the optical spectrophotometric assay of components in of a liquid sample (40) comprises an optical spectrophotometer (4) having an inspection zone (18) for receiving a sample for assay (40a); a radiation source (10) configured to generate optical radiation for supply into the inspection zone (18) to impinge on and thereby interact with a received sample for assay (40a); and a nebulizer (24) configured to discharge an aerosol (44) of the liquid sample (40) towards a one of one or more collection surfaces (32) located spaced apart from the nebulizer (24) and disposed to receive discharged aerosol (44) to form the sample for assay (40a).
Abstract:
A system (102) for determining properties of a sample (114) comprises a LIBS detector (104,106) and an infra-red absorption detector (108,110) for interrogating a sample (114) to generate LIBS spectral data and infra-red absorption spectral data respectively; and a data processor (112) adapted to apply at least one chemometric prediction model, each constructed to link, preferably quantitatively link, features of both LIBS and absorption spectral data to a different specific property of the sample, to a combined dataset derived from at least portions of both the LIBS and the absorption data to generate therefrom a determination, preferably a quantitative determination, of the specific property linked by that model.
Abstract:
A method of compensating for frequency drift of a reference energy source in an FT interferometer based spectrometer instrument having an arithmetic unit into which has been obtained data representing a reference interferogram (40) collected in response to a trigger signal having been generated in dependence on the emission frequency of the reference energy source and data representing a target interferogram (42) recorded by the FT interferometer in response to a trigger signal also having been generated in dependence on the emission frequency of the reference energy source in the same manner. The method further comprises the comparing in the arithmetic unit the data representing the reference interferogram (40) and the data representing the target interferogram (42) to determining a phase shift (d) between the interferograms in a window W in at least one region (36) away from center-burst (44) and generating in the arithmetic unit a mathematical transform dependent on the determined shift or shifts (d) to be subsequently applied to control the operation of the spectrometer instrument in order to generate data representing a frequency stabilized interferogram of an unknown sample recorded by the FT interferometer.
Abstract:
The invention concerns a device for the spectrometric assay of a liquid vinefication product (1) comprising an optical spectrometer (5) adapted to generate spectral information from the contents of a spectroscopic a sample cell (4); a data processor (10) having access to a chemometric calibration (11) developed from a spectral database (12) linking optical spectral information to compounds of interest in the liquid vinefication product (1) and configured to process the same to generate an output result (13) indicative of the presence of one or more compounds of interest in the liquid vinefication product (1) characterized in that the device further comprises a freezer unit (3) adapted for freeze distillation of the liquid vinefication product (1) to generate a liquid distillate for analysis in the spectroscopic sample cell (4).
Abstract:
Compensating for frequency drift of a reference energy source in an FT interferometer based spectrometer instrument may include obtaining data representing a reference interferogram collected in response to a trigger signal having been generated in dependence on the emission frequency of the reference energy source, and subsequently obtaining data representing a target interferogram recorded by the FT interferometer in response to a trigger signal also having been generated in dependence on the emission frequency of the reference energy source in the same manner. The method may further include comparing the obtained data to determine a phase shift between the interferograms in a window in at least one region away from center-burst, and generating a mathematical transform dependent on the determined shift to be subsequently applied to generate data representing a frequency stabilized interferogram of an unknown sample recorded by the FT interferometer.
Abstract:
Compensating for amplitude drift in a spectrometer may include making successive performances of a standardization process to generate, at each performance, a mathematical transform to compensate for amplitude drift for application by an arithmetic unit to a spectrum obtained by the spectrometer in an interval between the performances. The compensating may include modifying the mathematical transform with a function dependent on spectral data from a zero material measured in association with the standardization process and the single beam zero spectrum measured in an interval between performances. The compensating may include applying the modified mathematical transform to a spectrum from an unknown sample.