Apparatus and method for reconfiguring antenna elements

    公开(公告)号:GB2392784A

    公开(公告)日:2004-03-10

    申请号:GB0327519

    申请日:2002-04-01

    Applicant: HRL LAB LLC

    Abstract: Method and apparatus for actuating switches in a reconfigurable antenna array. Micro electro-mechanical system (MEMS) switches span gaps between antenna elements disposed on an antenna substrate. An integrated optic waveguide network which directs optical energy towards the MEMS switches is contained in a superstrate disposed above the antenna elements and substrate. The MEMS switches are formed on a semi-insulating substrate. When illuminated, the resistance of the semi-insulating substrate is lowered so as the reduce the resistance between the control contacts. The antenna array is reconfigured by directing optical energy to the photo-voltaic cells connected to selected MEMS switches to close those MEMS switches, thereby electrically connecting selected antenna elements and by directing optical energy to the semi-insulating substrate of selected MEMS switches to open those MEMS switches, thereby electrically disconnecting selected antenna elements.

    Phased array antenna
    13.
    发明专利

    公开(公告)号:AU2002250036A1

    公开(公告)日:2002-10-03

    申请号:AU2002250036

    申请日:2002-02-06

    Abstract: A reconfigurable wide band phased array antenna for generating multiple antenna beams for multiple transmit and receive functions. The antenna array comprises multiple long non-resonant TEM slot antenna apertures with RF MEMS switches disposed within the slots. The RF MEMS switches are positioned directly within the feed lines across the slots to directly control the coupling of RF energy to the slots. Multiple RF MEMS switches are used within each slot, which allows multiple transmit/receive functions and/or multiple frequencies to be supported by each slot. The frequency coverage provided by the slot antenna has a greater than 10:1 frequency range.

    Optically controlled mem switches
    15.
    发明专利

    公开(公告)号:AU6931700A

    公开(公告)日:2001-05-08

    申请号:AU6931700

    申请日:2000-08-23

    Applicant: HRL LAB LLC

    Abstract: An optically controlled micro-electromechanical (MEM) switch is described which desirably utilizes photoconductive properties of a semiconductive substrate upon which MEM switches are fabricated. In one embodiment the bias voltage provided for actuation of the switch is altered by illuminating an optoelectric portion of the switch to deactivate the switch. In an alternative embodiment, a photovoltaic device provides voltage to actuate the switch without any bias lines at all. Due to the hysteresis of the electromechanical switching as a function of applied voltage, only modest variation of voltage applied to the switch is necessary to cause the switch to open or close sharply under optical control.

    Monolithic switch
    17.
    发明专利

    公开(公告)号:AU2002249943A1

    公开(公告)日:2002-08-06

    申请号:AU2002249943

    申请日:2002-01-11

    Applicant: HRL LAB LLC

    Abstract: Apparatus for a micro-electro-mechanical switch that provides single pole, double throw switching action. The switch comprises a single RF input line and two RF output lines. The switch additionally comprises two armatures, each mechanically connected to a substrate at one end and having a conducting transmission line at the other end with a suspended biasing electrode located on top of or within a structural layer of the armature. Each conducting transmission line has conducting dimples that protrude beyond the bottom of the armature carrying the conducting transmission line. Closure of an armature causes the dimples of the corresponding conducting transmission line to mechanically and electrically engage the RF input line and the corresponding RF output line, thus directing RF energy from the RF input line to the selected RF output line.

    Cmos-compatible mem switches and method of making

    公开(公告)号:AU7067700A

    公开(公告)日:2001-06-06

    申请号:AU7067700

    申请日:2000-08-23

    Applicant: HRL LAB LLC

    Abstract: A microelectromechanical (MEM) switch is fabricated inexpensively by using processing steps which are standard for fabricating multiple metal layer integrated circuits, such as CMOS. The exact steps may be adjusted to be compatible with the process of a particular foundry, resulting in a device which is both low cost and readily integrable with other circuits. The processing steps include making contacts for the MEM switch from metal plugs which are ordinarily used as vias to connect metal layers which are separated by a dielectric layer. Such contact vias are formed on either side of a sacrificial metallization area, and then the interconnect metallization is removed from between the contact vias, leaving them separated. Dielectric surrounding the contacts is etched back so that they protrude toward each other. Thus, when the contacts are moved toward each other by actuating the MEM switch, they connect firmly without obstruction. Tungsten is typically used to form vias in CMOS processes, and it makes an excellent contact material, but other via metals may also be employed as contacts. Interconnect metallization may be employed for other structural and interconnect needs of the MEM switch, and is preferably standard for the foundry and process used. Various metals and dielectric materials may be used to create the switches, but in a preferred embodiment the interconnect metal layers are aluminum and the dielectric material is SiO2, materials which are fully compatible with standard four-layer CMOS fabrication processes.

Patent Agency Ranking