Abstract:
Verfahren zur Herstellung einer Halbleiteranordnung mit den Schritten: Herstellen eines ersten integrierten Schaltkreises (250a); Herstellen eines zweiten integrierten Schaltkreises (250b); und vertikales Koppeln des zweiten integrierten Schaltkreises (250b) an den ersten integrierten Schaltkreis (250a), wobei das Herstellen des ersten integrierten Schaltkreises (250a) ein Bereitstellen eines ersten Werkstücks (201a), ein Ausbilden zumindest eines ersten aktiven Gebiets (222a, 224a) innerhalb des ersten Werkstücks (201a) und ein Ausbilden zumindest eines tiefen Vias (240a, 242a) innerhalb des ersten Werkstücks (201a) vor dem Ausbilden des aktiven Gebiets des ersten integrierten Schaltkreises (250a) umfasst, wobei das zumindest eine tiefe Via (240a, 242a) eine vertikale elektrische Verbindung für den ersten integrierten Schaltkreis (250a) bereitstellt.
Abstract:
A method of forming deep isolation trenches in the fabrication of ICs is disclosed. The substrate is prepared with deep isolation trenches. The isolation trenches are partially filled with a first dielectric material. An etch mask layer is deposited on the substrate and used to remove excess first dielectric material on the surface of the substrate. The isolation trenches are then completely filled with a second dielectric material. Excess second dielectric material is then removed from the surface of the substrate.
Abstract:
Vertically stacked integrated circuits and methods of fabrication thereof are disclosed. Deep vias that provide vertical electrical connection for vertically stacked integrated circuits are formed early in the manufacturing process, before integrated circuits are bonded together to form a three dimensional integrated circuit (3D-IC).
Abstract:
A Top Oxide Method is used to form an oxide layer over an array of vertical transistors as in a trench dynamic random access memory (DRAM) array with vertically stacked access metal oxide semiconductor field effect transistors (MOSFETs). The Top Oxide is formed by first forming the vertical devices with the pad nitride (16) remaining in place. Once the devices have been formed and the gate polysilicon (18) has been planarized down to the surface of the pad nitride, the pad nitride is stripped away leaving the tops of the gate polysilicon plugs extending above the active silicon surface. This pattern of polysilicon plugs defines the pattern over which the Top Oxide is deposited. The deposited Top Oxide (21) fills the regions between and on top of the polysilicon plugs. The Top Oxide is than planarized back to the tops of the polysilicon plugs so contacts can be made between the passing interconnects and the gates of the vertical devices. The Top Oxide layer serves to separate the passing interconnects from the active silicon thereby reducing capacitive coupling between the two levels and providing a robust etch-stop layer for the reactive ion etch (RIE) patterning of the subsequent interconnect level.
Abstract:
A method of oxidizing a substrate having area of about 30,000 mm 2 or more. The surface is preferably comprised of silicon-containing materials, such as silicon, silicon germanium, silicon carbide, silicon nitride, and metal silicides. A mixture of oxygen-bearing gas and diluent gas normally non-reactive to oxygen, such as Ne, Ar, Kr, Xe, and/or Rn are ionized to create a plasma having an electron density of at least about 1 e12 cm -3 and containing ambient electrons having an average temperature greater than about 1 eV. The substrate surface is oxidized with energetic particles, comprising primarily atomic oxygen, created in the plasma to form an oxide film of substantially uniform thickness. The oxidation of the substrate takes place at a temperature below about 700° C., e.g., between about room temperature, 20° C., and about 500° C.