Abstract:
A method and system for performing initial cell search is disclosed. Step 1 (208) processing is preformed to detect a peak primary synchronization code (PSC) location (i.e. chip offset or chip location). Step 2 (210) processing is performed to obtain the toffset and code group. Step 3 (212) processing is performed to identify the midamble of a base station with which the WTRU performing the initial cell search may synchronize with.
Abstract:
K data signals, or bursts, are transmitted over a shared spectrum in a code division multiple access communication format. A combined signal is received and sampled over the shared spectrum, as a plurality of received vector versions. The combined signal includes the K transmitted data signals. A plurality of system matrices and an associated covariance matrix using codes and estimated impulse responses of the K data signals is produced. Each system matrix corresponds to a received vector version. The system and covariance matrices are extended and approximated as block circulant matrices. A diagonal matrix of each of the extended and approximated system and covariance matrices are determined by prime factor algorithm - fast Fourier transform (PFA-FFT) without division of the matrix. The received vector versions are extended. A product of the diagonal matrices and the extended received vector versions is taken. An inverse block discrete Fourier transform is performed by a PFA-FFT on a result of the product to produce the estimated data of the K data signals.
Abstract:
A system and a method of controlling transmitter power in a wireless communication system in which user data is processed as a multirate signal having a rate N(t) and in which the user data signal having rate N(t) for transmission. The transmission power is adjusted on a relatively slow basis based on quality of data received by a receiver of the transmitted data. The transmitter power is determined as a function of N(t)/M(t) such that a change in the data rate in the multiple channels or the rate of the transmission data signal is compensated in advance of a quality of data based adjustment associated with such data rate change. Preferably, the user data signal having rate N(t) is converted into the transmission data signal having the faster rate M(t) by repeating selected data bits whereby the energy per bit to noise spectrum density ratio is increased in the transmission data signal.
Abstract:
An automatic gain control (AGC) method according to the present invention applies an initial gain by a digital AGC circuit (13) in a timeslot is determined using a final calculated gain from the same timeslot in the previous frame together with an offset factor. An erase function (14) is activated for a given data sample block when the number of saturated data samples that are detected within the block (17) exceeds a threshold value. The power measurement made by the AGC circuit and used to update the gain is adjusted based on the number of measured data samples that are saturated. These elements provide a gain limiting function and allows limiting of the dynamic range for further signal processing.
Abstract:
A method and system for performing initial cell search in wireless communication system wherein unsuitable cells are excluded is disclosed. Stored frequencies are searched exhaustively and initial frequencies are search non-exhaustively. Initial frequencies may be searched exhaustively in certain circumstances. When performing exhaustive initial cell searches, primary synchronization codes that lead to unsuitable cells are excluded from subsequent initial cell searches performed on the same frequency.
Abstract:
A wireless transmit/receive unit (WTRU) uses an oscillator providing accuracy for synchronized communications parameters in an active mode, and operates at reduced power during a discontinuous reception (DRX) mode. A real time clock (RTC) is used as the frequency standard during the reduced power operation, and a frequency adjustment is effected while the RTC is used as the frequency standard. By effecting the frequency adjustment, the RTC is able to be used as the frequency standard for substantial time periods, thereby reducing power consumption of the WTRU during the DRX mode.
Abstract:
K data signals, or bursts, are transmitted over a shared spectrum in a code division multiple access communication format. A combined signal is received and sampled over the shared spectrum, as a plurality of received vector versions. The combined signal includes the K transmitted data signals. A plurality of system matrices and an associated covariance matrix using codes and estimated impulse responses of the K data signals is produced. Each system matrix corresponds to a received vector version. The system and covariance matrices are extended and approximated as block circulant matrices. A diagonal matrix of each of the extended and approximated system and covariance matrices are determined by prime factor algorithm - fast Fourier transform (PFA-FFT) without division of the matrix. The received vector versions are extended. A product of the diagonal matrices and the extended received vector versions is taken. An inverse block discrete Fourier transform is performed by a PFA-FFT on a result of the product to produce the estimated data of the K data signals.
Abstract:
A method for performing transport format combination indicator processing in a wireless communications system begins by collecting received samples for a timeslot (322). Processing of the received samples for the timeslot that does not require a transport format combination code list or TFC code list valid indicator is performed (342). Next, a TFCI value for the timeslot is received and is processed at the timeslot rate, producing the TFC code list and the TFC code list valid indicator (344). Then processing in the timeslot that requires the TFC code list or the TFC code list indicator is performed.