Abstract:
A method for producing a semiconductor component with a semiconductor body includes providing a substrate of a first conductivity type. A buried semiconductor layer of a second conductivity type is provided on the substrate. A functional unit semiconductor layer is provided on the buried semiconductor layer. At least one trench, which reaches into the substrate, is formed in the semiconductor body. An insulating layer is formed, which covers inner walls of the trench and electrically insulates the trench interior from the functional unit semiconductor layer and the buried semiconductor layer, the insulating layer having at least one opening in the region of the trench bottom. The at least one trench is filled with an electrically conductive semiconductor material of the first conductivity type, wherein the electrically conductive semiconductor material forms an electrical contact from a surface of the semiconductor body to the substrate.
Abstract:
According to an embodiment, a composite wafer includes a carrier substrate having a graphite layer and a monocrystalline semiconductor layer attached to the carrier substrate.
Abstract:
A semiconductor device includes a semiconductor substrate having a first side and a second side opposite the first side, an active area and a through contact area, the active area including a transistor structure having a control electrode, the through contact area including a semiconductor mesa having insulated sidewalls. The semiconductor device further includes a first metallization on the first side in the active area and a recess extending from the first side into the semiconductor substrate and between the active area and the through contact area and including in the through contact area a horizontally widening portion, the recess being at least partly filled with a conductive material forming a first conductive region in ohmic contact with the semiconductor mesa and the transistor structure. The semiconductor device also includes a control metallization on the second side and in ohmic contact with the semiconductor mesa.
Abstract:
According to an embodiment, a composite wafer includes a carrier substrate having a graphite layer and a monocrystalline semiconductor layer attached to the carrier substrate.
Abstract:
An apparatus is provided that includes a substrate. In addition, the apparatus includes a first electrically conductive path arranged in a second layer above the substrate and forming a first connection of the apparatus, and a second electrically conductive pad arranged in the second layer and forming a second connection of the apparatus. An electrically conductive element is arranged in a first layer spaced apart from the second layer. The electrically conductive element forms a first capacitor with either the first pad or the second pad. In addition, a first coil is arranged in the first layer, the second layer, or in both layers. A first end of the first coil is connected to the second pad.
Abstract:
A method for producing a polysilicon resistor device may include: forming a polysilicon layer; implanting first dopant atoms into at least a portion of the polysilicon layer, wherein the first dopant atoms include deep energy level donors; implanting second dopant atoms into said at least a portion of said polysilicon layer; and annealing said at least a portion of said polysilicon layer.
Abstract:
A method for producing a polysilicon resistor device may include: forming a polysilicon layer; implanting first dopant atoms into at least a portion of the polysilicon layer, wherein the first dopant atoms include deep energy level donors; implanting second dopant atoms into said at least a portion of said polysilicon layer; and annealing said at least a portion of said polysilicon layer.