Abstract:
Aspects of the disclosure provide for a thin control channel structure that can be utilized to enable multiplexing of two or more data transmission formats. For example, a thin control channel may carry information that enables ongoing transmissions utilizing a first, relatively long transmission time interval (TTI) to be punctured, and during the punctured portion of the long TTI, a transmission utilizing a second, relatively short TTI may be inserted. This puncturing is enabled by virtue of a thin channel structure wherein a control channel can carry scheduling information, grants, etc., informing receiving devices of the puncturing that is occurring or will occur. Furthermore, the thin control channel can be utilized to carry other control information, not being limited to puncturing information. Other aspects, embodiments, and features are also claimed and described.
Abstract:
Certain aspects of the present disclosure support techniques for time synchronization of spiking neuron models that utilize multiple nodes. According to certain aspects, a neural model (e.g., of an artificial nervous system) may be implemented using a plurality of processing nodes, each processing node implementing a neuron model and communicating via the exchange of spike packets carrying information regarding spike information for artificial neurons. A mechanism may be provided for maintaining relative spike-timing between the processing nodes. In some cases, a mechanism may also be provided to alleviate deadlock conditions between the multiple nodes.
Abstract:
Wireless devices with different capabilities may use a single file containing multiple (e.g., two) PRLs for system selection and acquisition. A first PRL in the file has a first (e.g., IS-683-A) format and includes PRL information for, e.g., 1x systems. A second PRL has a second (e.g., IS-683-C) format and includes PRL information for, e.g., 1x and 1xEV-DO systems or just 1xEV-DO systems. A legacy wireless device supporting only IS-683-A would read and use the first PRL for system selection and acquisition and ignore the second PRL. A wireless device supporting IS-683-C would read the second PRL and (1) use the second PRL by itself if it contains PRL information for both 1x and 1xEV-DO systems or (2) combine the first and second PRLs to generate a combined PRL if the second PRL contains PRL information for only 1xEV-DO systems.
Abstract:
A wireless communication device selects another service provider system when the MWCD has not changed its geographic position more than a threshold level.
Abstract:
A mobile station is adapted to avoid unusable wireless communications systems during system acquisition. The mobile station includes processing circuitry and a memory storing a preferred roaming list and system avoidance data. The system avoidance data identifies unusable systems and includes corresponding avoidance criteria. The processing circuitry is adapted to select a system from the preferred roaming list in accordance with a predetermined system acquisition procedure. The selected system is skipped if corresponding avoidance criteria is satisfied. If the selected system is usable, the mobile station may attempt to acquire and register with the selected system. The processing circuitry is further adapted to add systems to the system avoidance data in response to a communications failure, and remove systems from the system avoidance data when corresponding avoidance criteria is no longer satisfied. The avoidance criteria may include a time period during which the corresponding system is unusable.
Abstract:
In a mobile station having an acquired wireless communications system, the mobile station performs preliminary searches for more desirable wireless communications systems in between paging channel and quick paging channel assigned slots, while successfully monitoring the mobile station's assigned slots. The mobile station then analyzes the preliminary search results and attempts to acquire the more desirable wireless communications systems that meets preliminary search criteria. The mobile station includes a communications transceiver that facilitates wireless communications with a local base station and processing circuitry adapted to control a slotted operation mode of the mobile station. The processing circuitry is adapted to instruct the communications transceiver to listen for incoming messages from the acquired communications system during slot modes and listen for candidate communications systems during slot-off modes. The preliminary searches include performing tests on the signal received on a candidate communications system channel. The tests may include measuring the signal strength, calculating the ratio E c /I o and demodulating a synchronization signal.
Abstract:
Methods, systems, and devices for wireless communications are described in which UEs in sidelink communications may perform UE-to-UE positioning and ranging estimations through exchange of one or more predefined waveforms. A first UE may transmit a first predefined waveform, which may be received at a second UE. The second UE may, responsive to detection of the first predefined waveform, transmit a second predefined waveform, which may be received at the first UE. The first UE may use a closed-loop machine-learning algorithm to estimate a position of the first UE, ranging information between the first UE and the second UE, or combinations thereof. The position/ranging information may be provided to a base station, which may fuse multiple estimates and transmit updated positioning/ranging information to the first UE, the second UE, or both.
Abstract:
Systems and methods are disclosed for minimizing latency between receipt of a NACK at a base station from a user equipment (UE) and retransmission of data to the UE. Time constraints for processing the ACK/NACK are relaxed so the base station can decode the ACK/NACK to determine whether a NACK has been received and then prepare for transmission of the appropriate data to the UE in the immediately following transmission time interval (TTI). These constraints are relaxed by separating download data indicator (DDI) from the PDCCH control data and delaying transmission of the DDI until decoding of the ACK/NACK.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The method includes scheduling at a scheduling entity, a first frame for transmission over a wireless network that supports time division duplexing (TDD), where the first frame includes a first duplex symbol that includes a first bandwidth to be used for uplink transmission to the scheduling entity and a second bandwidth to be used for downlink transmission from the scheduling entity, and using the second bandwidth to transmit scheduling information while the first frame is being transmitted. The scheduling information may be related to a second frame that is scheduled to be transmitted immediately after the first frame. The scheduling information includes an uplink grant or a downlink grant.
Abstract:
Aspects of the present disclosure provide for the pairing of an inter-band carrier with a time division duplex (TDD) carrier. If the paired band is a frequency division duplex (FDD) band, then base stations and mobile devices may transmit and receive additional thin control channels on FDD carriers to enable full duplex operations. If the paired band is a TDD band, then a conjugate or inverse carrier may be used such that full duplex, or a close approximation thereto, is achieved. With the introduction of a paired channel and fast control channels, rapid uplink/downlink switching may be achieved for TDD carriers efficiently and effectively. Other aspects, embodiments, and features are also claimed and described.