Abstract:
A thin film platinum resistance thermometer capable of operation at elevated temperatures includes a benign dielectric layer covering the thin film platinum resistance temperature sensing element and a barrier layer overlying the dielectric layer The barrier layer which is preferrably titanium dioxide, resists diffusion of contaminants which would alter the electrical characteristics of the sensing element while permitting diffusion of oxygen through the barrier layer
Abstract:
A wireless field device (34, 50, 70, 80, 91, 100) is disclosed. The field device (34, 50, 70, 80, 91, 100) includes a wireless communications module (32) and an energy conversion module (38) . The wireless communications modu le (32) is configured to wirelessly communicate process-related information wit h another device. The energy conversion module (38) is coupled to the wireless communications module (32) . The energy conversion module (38) is configured to couple to a thermal source, and to generate electricity from thermal potential energy in the thermal source.
Abstract:
A sensor has an electrical interconnect grown in a cavity between first and second layers that are bonded together. Electrically conductive grain growth material is selectively deposited on at least one of two electrically conductive film interconnect regions that face one another across the cavity. The grain growth material is then grown upon predetermined conditions to form the electrical interconnect between the two interconnect regions. A sensor element deposited in the cavity is electrically coupled between the layers by the interconnect. The grain growth material can be tantalum that is heated after the layers are bonded to grow grains that interconnect the electrically conductive films.
Abstract:
First capacitance pressure sensor (70A, B) has a fusion bonded single crystal structure (sapphire with cavity). Second one (70A, B) has an elongated and thick single crystal structure. Third one (70A, B) uses the electric field emanating from the back sides of the capacitor plates. First differential pressure transmitter uses a process barrier (71) and an elongated member as a sensor (70A, B). Second differential pressure transmitter uses single crystal structures with stress isolation members as sensors (70A, B). Basically thick slab cavity capacitance sapphire sensors are directly exposed to a process fluid. Slab: 15x3x2 cubic mm, cavity cross section: 1mm x 0.5 micro m, capacitance: 42 pF.
Abstract:
A solid state, thin film moisture sensing element is disclosed. The sensing element is fabricated by thin film deposition of at least a pair of two layer electrodes on an insulating surface. The active surface of the element is then coated with a layer of hygroscopic material and placed in a diffusion limiting housing to complete the sensing element assembly.