Abstract:
Chemical vapor deposition articles and processes include a chemical vapor deposition functionalization on a material, the material including an sp3 arrangement of carbon. The chemical vapor deposition functionalization is positioned to be contacted by a process fluid, a hydrocarbon, an analyte, exhaust, or a combination thereof. Additionally or alternatively, the chemical vapor de position functionalization is not of a refrigerator shelf or a windshield.
Abstract:
Liquid chromatography techniques are disclosed. Specifically, the liquid chromatography technique includes providing a liquid chromatography system having a coated stainless steel fluid contacting element; and transporting a fluid to contact the coated stainless-steel fluid-contacting element; wherein the fluid includes adenosine triphosphate; wherein the coated stainless steel fluid-contacting element has a coating, the coating including carbon, silicon, oxygen, and hydrogen.
Abstract:
A wear coating is disclosed that includes a layer treated by a trifunctional organosilane. An article is also disclosed, the article having a surface to which the wear coating is applied. A method of applying the wear coating is also disclosed. In some embodiments, the organosilane is trimethylsilane and the wear coating is applied by chemical vapor deposition, followed by heat treating the wear coating in the presence of the trimethylsilane.
Abstract:
Treated articles and a process of producing the treated articles, systems having treated articles, and processes incorporating treated articles are disclosed. The treated articles include a metal or metallic substrate, and a surface treatment of the metal or metallic substrate, the surface treatment having fluorine, silicon, and carbon. The systems include a flow path, with the surface treatment being within the flow path. The processes include flowing a fluid through the flow path.
Abstract:
Treated articles and a process of producing the treated articles, systems having treated articles, and processes incorporating treated articles are disclosed. The treated articles include a metal or metallic substrate, and a surface treatment of the metal or metallic substrate, the surface treatment having fluorine, silicon, and carbon. The systems include a flow path, with the surface treatment being within the flow path. The processes include flowing a fluid through the flow path.
Abstract:
A coated article and a chemical vapor deposition process are disclosed. The coated article includes a functionalized layer applied to the coated article by chemical vapor deposition. The functionalized layer is a layer selected from the group consisting of an oxidized-then-functionalized layer, an organofluoro treated layer, a fluorosilane treated layer, a trimethylsilane treated surface, an organofluorotrialkoxysilanes treated layer, an organofluorosilylhydrides-treated layer, an organofluoro silyl treated layer, a tridecafluoro 1,1,2,2-tetrahydrooctylsilane treated layer, an organofluoro alcohol treated layer, a pentafluoropropanol treated layer, an allylheptafluoroisopropyl ether treated layer, a (perfluorobutyl) ethylene treated layer, a (perfluorooctyl) ethylene treated layer, and combinations thereof. The process includes applying the functionalized layer.
Abstract:
Liquid chromatography techniques are disclosed. Specifically, the liquid chromatography technique includes providing a liquid chromatography system having a coated stainless steel fluid contacting element; and transporting a fluid to contact the coated stainless-steel fluid-contacting element; wherein the fluid includes adenosine triphosphate; wherein the coated stainless steel fluid-contacting element has a coating, the coating including carbon, silicon, oxygen, and hydrogen.
Abstract:
A chemical vapor deposition process and coated article are disclosed. The chemical vapor deposition process includes positioning an article in a chemical vapor deposition chamber, then introducing a deposition gas to the chemical vapor deposition chamber at a sub-decomposition temperature that is below the thermal decomposition temperature of the deposition gas, and then heating the chamber to a super-decomposition temperature that is equal to or above the thermal decomposition temperature of the deposition gas resulting in a deposited coating on at least a surface of the article from the introducing of the deposition gas. The chemical vapor deposition process remains within a pressure range of 0.01 psia and 200 psia and/or the deposition gas is dimethylsilane. The coated article includes a substrate subject to corrosion and a deposited coating on the substrate, the deposited coating having silicon, and corrosion resistance.