Abstract:
A method is disclosed for screening potential catalysts for polymerization performance. The method includes the steps of reacting a potential catalyst with at least a first monomer under polymerization conditions, determining t he polymerization performance of the catalyst with the at least first monomer, and using the determination as a predictor for the polymerization performanc e of the catalyst for at least a second monomer, wherein the first and second monomers are different from each other and the first monomer is an olefin other than ethylene. The method provides a useful, concrete and tangible result that has particular value for identifying appropriate catalysts for olefin polymerization and copolymerization.
Abstract:
The inventions disclosed herein are new complexes and catalysts comprising metal-ligand complexes or compositions of metal precursors and ligands (and optionally activators) that catalyze polymerization and copolymerization reactions, particularly with monomers that are olefins, diolefins or acetylenically unsaturated. These compositions can also polymerize monomers that have polar functionalities in homopolymerizations or copolymerizations. Also, diolefins in combination with ethylene or alpha-olefins or 1,1-disubstituted olefins may be co-polymerized. The new catalyst compositions can be prepared by combining a metal precursor with a suitable ligand and, optionally, an activator or combination of activators. The main feature of this invention is the use of new metal ligand complexes to provide the active polymerization catalysts.
Abstract:
A method is disclosed for screening potential catalysts for polymerization performance. The method includes the steps of reacting a potential catalyst with at least a first monomer under polymerization conditions, determining the polymerization performance of the catalyst with the at least first monomer, and using the determination as a predictor for the polymerization performance of the catalyst for at least a second monomer, wherein the first and second monomers are different from each other and the first monomer is an olefin other than ethylene. The method provides a useful, concrete and tangible result that has particular value for identifying appropriate catalysts for olefin polymerization and copolymerization.
Abstract:
The inventions disclosed herein are new complexes and catalysts comprising metal-ligand complexes or compositions of metal precursors and ligands (and optionally activators) that catalyze polymerization and copolymerization reactions, particularly with monomers that are olefins, diolefins or acetylenically unsaturated monomers. These compositions can also polymerize monomers that have polar functionalities in homopolymerizations or copolymerizations. Also, diolefins in combination with ethylene or alpha -olefins or 1,1-disubstituted olefins may be co-polymerized. The new catalyst compositions can be prepared by combining a metal precursor with a suitable ligand and, optionally, an activator or combination of activators. The main feature of this invention is the use of new metal ligand complexes to provide the active polymerization catalysts.
Abstract:
New ligands, compositions, metal-ligand complexes and arrays with pyridylamine ligands are disclosed that catalyze the polymerization of monomers into polymers. Certain of these catalysts with hafnium metal centers have high performance characteristics, including higher comonomer incorporation into ethylene/olefin copolymers, where such olefins are for example, 1-octene, isobutylene or styrene. Certain of the catalysts are particularly effective at polymerizing propylene to high molecular weight isotactic polypropylene in a solution process at a variety of polymerization conditions.
Abstract:
New ligands, compositions, metal-ligand complexes and arrays with pyridylamine ligands are disclosed that catalyze the polymerization of monomers into polymers. Certain of these catalysts with hafnium metal centers have high performance characteristics, including higher comonomer incorporation into ethylene/olefin copolymers, where such olefins are for example, l-octene, isobutylene or styrene. Certain of the catalysts are particularly effective at polymerizing propylene to high molecular weight isotactic polypropylene in a solution process at a variety of polymerization conditions.
Abstract:
New ligands, compositions, metal-ligand complexes and arrays with pyridylamine ligands are disclosed that catalyze the polymerization of monomers into polymers. Certain of these catalysts with hafnium metal centers have high performance characteristics, including higher comonomer incorporation into ethylene/olefin copolymers, where such olefins are for example, l-octene, isobutylene or styrene. Certain of the catalysts are particularly effective at polymerizing propylene to high molecular weight isotactic polypropylene in a solution process at a variety of polymerization conditions.