Abstract:
A fin field effect transistor (FinFET) with improved electrical performance and a method of manufacturing the same are disclosed. A FinFET includes a substrate having a top surface and an insulation. At least a recessed fin is extended upwardly from the top surface of the substrate, and at least a gate stack is formed above the substrate, wherein the gate stack is extended perpendicularly to an extending direction of the recessed fin, and the recessed fin is outside the gate stack. The insulation includes a lateral portion adjacent to the recessed fin, and a central portion contiguous to the lateral portion, wherein a top surface of the lateral portion is higher than a top surface of the central portion. A top surface of the recessed fin is lower than the top surface of the central portion of the insulation.
Abstract:
A semiconductor device includes a substrate, a gate structure, a sidewall spacer, and an epitaxial layer. The gate structure is disposed on the substrate, and the substrate has at least one recess disposed adjacent to the gate structure. The sidewall spacer is disposed on at least two sides of the gate structure. The sidewall spacer includes a first spacer layer and a second spacer layer, and the first spacer layer is disposed between the gate structure and the second spacer layer. The epitaxial layer is disposed in the recess, and the recess is a circular shaped recess. A distance between an upmost part of the recess and the gate structure is less than a width of the sidewall spacer.
Abstract:
A method for fabricating semiconductor device is disclosed. The method includes the steps of: providing a substrate; forming a gate structure on the substrate; performing a first dry etching process to form a recess in the substrate adjacent to the gate structure; and performing a second dry etching process to expand the recess.
Abstract:
A method for manufacturing a semiconductor device is provided, comprising steps of providing a substrate with an underlying layer formed thereon; forming a gate layer overlying the underlying layer; and forming a multi-layer hard mask layer on the gate layer, and the multi-layer hard mask layer comprising a plurality of material layers and a top hard mask formed on the material layers, wherein the gate layer and the top hard mask contain the same element, such as silicon.
Abstract:
A method of fabricating a semiconductor device structure is provided. The method includes the following step. A gate dielectric layer is formed on a substrate. A gate electrode is on the gate dielectric layer. The gate dielectric layer exposed by the gate electrode is treated. A first etching process is performed to remove at least a portion of the gate dielectric layer exposed by the gate electrode. A spacer is formed on the sidewall of the gate electrode. A second etching process is performed to form recesses in the substrate beside the gate electrode. Besides, during the first etching process and the second etching process, an etching rate of the treated gate dielectric layer is greater than an etching rate of the untreated gate dielectric layer.
Abstract:
A semiconductor structure includes a gate, a dual spacer and two recesses. The gate is located on a substrate. The dual spacer is located on the substrate beside the gate. The recesses are located in the substrate and the dual spacers, wherein the sidewall of each of the recesses next to the gate has a lower tip and an upper tip, and the lower tip is located in the substrate while the upper tip is an acute angle located in the dual spacer and close to the substrate. The present invention also provides a semiconductor process formed said semiconductor structure.
Abstract:
A method for fabricating semiconductor device includes the steps of first forming a gate dielectric layer on a substrate; forming a gate material layer on the gate dielectric layer, and removing part of the gate material layer and part of the gate dielectric layer to form a gate electrode, in which a top surface of the gate dielectric layer adjacent to two sides of the gate electrode is lower than a top surface of the gate dielectric layer between the gate electrode and the substrate. Next, a first mask layer is formed on the gate dielectric layer and the gate electrode, part of the first mask layer and part of the gate dielectric layer are removed to form a first spacer, a second mask layer is formed on the substrate and the gate electrode, and part of the second mask layer is removed to forma second spacer.
Abstract:
A method for fabricating semiconductor device includes the steps of first forming a gate dielectric layer on a substrate; forming a gate material layer on the gate dielectric layer, and removing part of the gate material layer and part of the gate dielectric layer to form a gate electrode, in which a top surface of the gate dielectric layer adjacent to two sides of the gate electrode is lower than a top surface of the gate dielectric layer between the gate electrode and the substrate. Next, a first mask layer is formed on the gate dielectric layer and the gate electrode, part of the first mask layer and part of the gate dielectric layer are removed to form a first spacer, a second mask layer is formed on the substrate and the gate electrode, and part of the second mask layer is removed to forma second spacer.
Abstract:
The present invention provides a method of manufacturing a gate stack structure. The method comprises providing a substrate. A dielectric layer is then formed on the substrate and a gate trench is formed in the dielectric layer. A bottom barrier layer, a first work function metal layer and a top barrier layer are formed in the gate trench in sequence. Afterwards, a silicon formation layer is formed on the top barrier layer and filling the gate trench. A planarization process is performed, to remove a portion of the silicon formation layer, a portion of the bottom barrier layer, a portion of the first work function metal layer, and a portion of the top barrier layer. Next, the remaining silicon formation layer is removed completely, and a conductive layer is filled in the gate trench.
Abstract:
A semiconductor device includes a substrate, a metal gate on the substrate, and a first inter-layer dielectric (ILD) layer around the metal gate. A top surface of the metal gate is lower than a top surface of the ILD layer thereby forming a recessed region atop the metal gate. A mask layer is disposed in the recessed region. A void is formed in the mask layer within the recessed region. A second ILD layer is disposed on the mask layer and the first ILD layer. A contact hole extends into the second ILD layer and the mask layer. The contact hole exposes the top surface of the metal gate and communicates with the void. A conductive layer is disposed in the contact hole and the void.