Abstract:
A lane departure prevention system comprises a driving-power difference generating unit for generating a driving power difference between left and right driving wheels, a braking power difference generating unit for generating a braking power difference between left and right wheels, a departure tendency determining unit for determining a tendency of departure of a vehicle from a lane of travel, and a yaw moment applying unit for switching a departure avoidance control for applying, to the vehicle, a yaw moment generated by the driving-power difference generating unit and a departure avoidance control for applying, to the vehicle, the yaw moment generated by the braking-power difference generating unit, on the basis of a driving state of the vehicle (vehicle speed, road-surface friction coefficient) when the departure tendency determining unit determines that the vehicle has a tendency to depart from the lane of travel.
Abstract:
A lane departure prevention apparatus is configured to conduct a course correction in a lane departure avoidance direction when a controller (8) determines that there is a potential for a vehicle to depart from a driving lane. The controller (8) combines yaw control and deceleration control to conduct departure prevention control to avoid lane departure. The yaw control is not actuated if the opposite direction from the steering direction coincides with the lane departure direction (steps S10 and S11). Preferably, the controller (8) sets the timing of yaw moment and the deceleration of the vehicle on the basis of the acceleration or deceleration of the vehicle, and performs braking control so that these settings are achieved (steps S7 to S9). Preferably, the controller (8) calculates the target yaw moment in the lane departure-avoidance direction on the basis of the running state of the vehicle, and calculates the deceleration amount by taking into account the driver braking operation amount.
Abstract:
The invention relates to a system for automatic following-distance control, notably in congested traffic, in a motor vehicle (1) so as to facilitate driving in congested traffic by both taking over transverse steering by means of an automatic steering system and ensuring that a given distance is maintained to a vehicle driving ahead. The latter function calls for an adaptive driving and brake control system with a 'stop' and 'go' function. According to the invention selection and decision means (5, 6, 7, 8, 9) are provided for which are able to selected both control parameters and control types, for example following-distance control of the motor vehicle (1) in accordance with road markings recognized by video camera or in accordance with a detected leading vehicle. The system is divided into hierarchical levels (I-IV). The driver always remains in the monitoring and adaptation circuit assigned to the highest hierarchical level (IV) so that he has the highest priority and can overrule the system at any time.
Abstract:
Disclosed is a driving support apparatus for setting a traveling lane in which a vehicle can travel on the basis of a road marking to indicate a lane boundary or a traveling-prohibited region and performing support by combining steering of the vehicle and deceleration of the vehicle so that the vehicle is allowed to travel in the traveling lane if the vehicle is to be departed from the traveling lane, wherein the steering of the vehicle and the deceleration of the vehicle, which are to be performed when the support is performed so that the vehicle is allowed to travel in the traveling lane, are individually controlled depending on a difference ΔY between a target yaw rate Ytrg and an actual yaw rate Yrea if the actual yaw rate Yrea is smaller than the target yaw rate Ytrg in order not to allow the vehicle to exceed the traveling lane.
Abstract:
The present lane departure prevention system comprises a driving-power difference generating unit for generating a driving power difference between left and right driving wheels, a braking power difference generating unit for generating a braking power difference between left and right wheels, a departure tendency determining unit for determining a tendency of departure of a vehicle from a lane of travel, and a yaw moment applying unit for switching a departure avoidance control for applying, to the vehicle, a yaw moment generated by the driving-power difference generating unit and a departure avoidance control for applying, to the vehicle, the yaw moment generated by the braking-power difference generating unit, on the basis of a driving state of the vehicle when the departure tendency determining unit determines that the vehicle has a tendency to depart from the lane of travel.
Abstract:
A stability control system for road vehicles comprising a limit handling assistance controller which uses video lane detection measurements in conjunction with vehicle dynamics information, including inertial brakes and steering measurements to control vehicle EPS and VSC systems to assist the driver stabilize the vehicle and correct for any lane offset prior to and/or during of understeer, oversteer, split-μ and heavy breaking conditions, and lane changes.
Abstract:
In an automotive lane deviation avoidance system that prevents a host vehicle from deviating from its driving lane by correcting the host vehicle's course in a direction that avoids the host vehicle's lane deviation in the presence of a possibility of the host vehicle's lane deviation, the system calculates a desired yawing moment needed to avoid the host vehicle's lane deviation from the driving lane. The system compensates for the desired yawing moment by a correction factor or a gain, which is determined based on a throttle opening of the host vehicle.
Abstract:
GPS satellite (4) ranging signals (6) received (32) on comm1, and DGPS auxiliary range correction signals and pseudolite carrier phase ambiguity resolution signals (8) from a fixed known earth base station (10) received (34) on comm2, at one of a plurality of vehicles/aircraft/automobiles (2) are computer processed (36) to continuously determine the one's kinematic tracking position on a pathway (14) with centimeter accuracy. That GPS-based position is communicated with selected other status information to each other one of the plurality of vehicles (2), to the one station (10), and/or to one of a plurality of control centers (16), and the one vehicle receives therefrom each of the others' status information and kinematic tracking position. Objects (22) are detected from all directions (300) by multiple supplemental mechanisms, e.g., video (54), radar/lidar (56), laser and optical scanners. Data and information are computer processed and analyzed (50, 52, 200, 452) in neural networks (132, FIGS. 6-8) in the one vehicle to identify, rank, and evaluate collision hazards/objects, an expert operating response to which is determined in a fuzzy logic associative memory (484) which generates control signals which actuate a plurality of control systems of the one vehicle in a coordinated manner to maneuver it laterally and longitudinally to avoid each collision hazard, or, for motor vehicles, when a collision is unavoidable, to minimize injury or damage therefrom. The operator is warned by a heads up display and other modes and may override. An automotive auto-pilot mode is provided.
Abstract:
A method for performing closed-loop control of a motor vehicle having a brake system with a stability control system comprises comparing an actual yaw rate with a setpoint yaw rate which is calculated using a model. A yaw moment of a closed-loop or open-loop assistance control of an assistance system for lane guidance or transverse guidance is taken into account during the calculation of the setpoint yaw rate. An electronic brake control unit which is suitable for carrying out the method and is connected to at least one vehicle sensor, in particular a steering angle sensor, yaw rate sensor and/or wheel rotational speed sensors. The brake control unit can bring about, through actuation of actuators, a driver-independent increase in and a modulation of the braking forces at the individual wheels of the vehicle.
Abstract:
The present lane departure prevention system comprises a position detector means for detecting positional information of a vehicle with respect to a lane of travel, a determining unit for comparing the positional information with a first threshold value indicating a predetermined positional relation with respect to the lane of travel, and determining a departure of the vehicle from the lane of travel on the basis of the comparison result, and a yaw moment applying unit for applying a yaw moment to the vehicle and switching a first process of applying the yaw moment to the vehicle only by steering wheels and a second process of applying the yaw moment to the vehicle by steering the wheels and applying a braking power to the wheels, on the basis of a traveling condition of the vehicle, when the determining unit determines that the vehicle departs from the lane of travel.