Abstract:
A reinforced inflatable wing improves the tolerance of the OML and reinforces the wing in at least the high load areas. This approach provides fitment constrained air vehicles with wings having increased surface area to improve flight endurance or aerodynamic control. A wing box forms a first portion of the wing. A skin having a plurality of rigid plates affixed thereto is inflated to form a second portion of the wing to either increase the chord length or lengthen the wing span. The skin is suitably inflated with foam to form a solid wing.
Abstract:
A deployment brake release system for use with an airborne guidance unit (AGU) of a parachute suitable for precision cargo delivery. The parachute includes deployment brake lines secured at one end to the edge of the canopy and connected at the other end through looped ends to motor control lines. The motor control lines are, in turn, engaged with the motor of the AGU. The deployment brake release system includes at least one hook mount having a hook secured to the AGU frame. The looped ends of the deployment brake lines are engaged with the hook during rigging so that, upon deployment, opening forces are applied to the hook mount rather than the motor. After full canopy inflation, the motor, via the motor control lines, pulls on the brake line looped ends to disengage them from the hook, transferring subsequent canopy loads to the AGU motor for the remainder of the flight. A method for releasing the deployment brake lines is also disclosed.
Abstract:
A transformable gun launched aero vehicle having a ballistic projectile configuration and an aeroplane configuration includes a cylinder forming a shell of the vehicle in the ballistic projectile configuration and wings deployable from the cylinder. The wings are capable of achieving sufficient lift for sustained flight in the aeroplane configuration. The cylinder forms a fuselage of the vehicle in the aeroplane configuration. A wing includes plural rib elements, plural inflatable tubes where each tube is braced by the plural rib elements, and a wind shell disposed around the plural inflatable tubes and the plural rib elements. The vehicle includes an inflatable tail section that is inflated while the vehicle is in the aeroplane configuration. The vehicle includes a parachute that is reversibly deployable from a nose portion of the vehicle. The vehicle includes at least one landing rod. Each landing rod is reversibly extendable from the vehicle. A landing controller controls a first landing rod to extend after the vehicle has begun to vertically descend. The vehicle includes a folding propeller deployable from the fuselage in the aeroplane configuration. The vehicle includes a control system, and the control system includes a module to determine when the vehicle has reached a first predetermined state that defines an initiation of a transition from the ballistic projectile configuration to the aeroplane configuration.
Abstract:
Methods and apparatus for an adaptable solar airframe are provided herein. In some embodiments, an adaptable solar airframe includes a solar PV system having at least one solar tracking system and being able to follow the sun position in order to increase sunlight collection and power output; and an expandable body having an aerodynamic cross-section that minimizes parasitic air drag at any given thickness of the body, further being at least partially transparent to sunlight, further enclosing the solar PV system, and further being able to change its shape in response to changes in the positions of the solar PV system.
Abstract:
A reinforced inflatable wing improves the tolerance of the OML and reinforces the wing in at least the high load areas. This approach provides fitment constrained air vehicles with wings having increased surface area to improve flight endurance or aerodynamic control. A wing box forms a first portion of the wing. A skin having a plurality of rigid plates affixed thereto is inflated to form a second portion of the wing to either increase the chord length or lengthen the wing span. The skin is suitably inflated with foam to form a solid wing.
Abstract:
A wireless-controlled airplane includes a flying unit and an on-ground controller which is connected to the flying unit through a communication section and flies the flying unit. The flying unit includes a body, a drive section installed on the body, a propulsion apparatus which generates a propulsive force when driven by the drive section, a main wing including a plurality of wing elements which are installed so as to be able to move with respect to each other, an opening and closing mechanism which changes the relative positions of the wing elements to change the effective area of the main wing, and a dropping apparatus which selectively holds and drops a load. By changing the effective area of the main wing, the flight speed can be changed, so the capacity and size of the drive section for rotating the propulsion apparatus can be decreased.
Abstract:
A hollow elliptical-cylindrical hull conformingly houses a hollow rectangular-prismatic cabin whereby the four longitudinal parallel outside edges of the latter make contact with the inside surface of the former. The fully constructed aircraft (either non-powered or powered) includes the integral hull-plus-cabin structure along with nose, tail and airfoil structures that are coupled therewith. The cabin conformingly accommodates hollow rectangular-prismatic modules useful for cargo storage. While the nose and/or tail structure is uncoupled from the integral hull-plus-cabin structure, the modules are inserted into the cabin and the cabin is sealed. The aircraft is lifted (e.g., via airplane, helicopter, rocket or balloon) to a particular elevation and released, whereupon the two wings fully emerge and the aircraft effects controlled flight until reaching its destination. After landing, the nose and/or tail structure is uncoupled from the integral hull-plus-cabin structure, the cabin is unsealed, and the modules are removed from the cabin.
Abstract:
A small radio controlled flying device propelled by a thermal engine (20) with pusher type airscrew (19) for remote sensing, the device being capable of short take-off and landing and flying at maximum speed of 35 Km/h. The device includes a pod and wings, the pod (1) being a rigid tricycle carriage dismountable by disengagement of substantially pyramidal jig with rear base (2) and front apex (7), lower plane (3), two lateral planes (4, 5) and an upper plane (6). The base is a welded one-piece element that includes the engine, the airscrew, a tank and the radio control. The apex is a welded one-piece element. The lower plane and the two lateral planes include spars (11, 12) assembled at the base and as the apex. The lower plane includes at its three end angles two rear wheels (8) and a front wheel (9), the front wheel being provided to protrude towards the front in the apex and the wheels being low pressure tires. The wings (13) are a caisson-type supple parachute and are connected to the pod in an adjustable fashion by two front slings (17), two braking slings (18) acting on the two flaps/ailerons.
Abstract:
An aircraft which is designed for remote controlled slow flight, indoor or in a small outdoor yard or field. The aerial lifting body is defined by a series of lightweight planar or thin airfoil surfaces (A1, A2, A3, A4) arranged in a radially symmetrical configuration. Suspended within the cavity (O) formed by the thin airfoil surfaces (A1, A2, A3, A4) is a thrust generating propeller system (C) that is angled upwardly and that can be regulated remotely so as to change the angle of the thrust vector within the cavity (O) for steering. Lifting, stability, turning, and general control of the direction of motion in flight is accomplished without any formal wings, rudder, tail, or control surfaces.
Abstract:
A Multiple Task Aeroarrier (MTA) (20) with a semi-cuboid shape housing a two front ducted propellers (21) with their swinging mechanism (23) and outlet ducts (22) which are extending toward the rear side, rear ducted propellers (24) are installed inside the second half of two central ducts (25) from the back, these ducts are extending from the front and ending with swivel type nozzles (26). Two inflatable wings (27) are provided with stowing or retarding mechanisms. MTA (20) vertical take-off is initiated by swinging the front ducted propellers into vertical configuration, the rear swivel nozzles are turned into vertical position while the wings still stowed, at a suitable height, the wings are deployed, the front ducted propellers are swung horizontally while the rear swivel nozzles are positioned horizontally. For landing the front ducted propellers and swivel nozzles are swung vertically up, and the wings are stowed.