Abstract:
The invention provides a process for adjusting the friction coefficient between a surface of a first solid object and a surface of a second solid object which surfaces are at least partly connected by means of a liquid material, wherein the shear behaviour of the liquid material is adjusted by subjecting at least part of the liquid material to an external stimulus.
Abstract:
A mechanical device includes a long, narrow element made of a rigid, elastic material. A rigid frame is configured to anchor at least one end of the element, which is attached to the frame, and to define a gap running longitudinally along the element between the beam and the frame, so that the element is free to move within the gap. A solid filler material, different from the rigid, elastic material, fills at least a part of the gap between the element and the frame so as to permit a first mode of movement of the element within the gap while inhibiting a different, second mode of movement.
Abstract:
The invention relates to a flat coil and to a lithographic method for producing microcomponents with metal component structures in the sub-millimeter range. According to the inventive method, a resist material is structured by means of selective exposition and removing the unexposed zones and filling in the gaps between the resist structures with metal by means of a galvanic method to produce the metal component structures. The aim of the invention is to improve such a method so that the microcomponents can be subdivided during said process. To this end, a structured three-dimensional sacrificial metal layer is produced during the production of the microcomponent, said sacrificial layer delimiting the microcomponent and being removed once the microcomponent is due to be subdivided. The invention also relates to a method for producing microcomponents with component structures of cross-linkable resist material and to a flat coil for micromotors with at least one coil layer with strip conductors in the sub-millimeter range.
Abstract:
A micro mechanical component of the present invention comprises a base, and at least one drive portion supported on the base and relatively driving to the base, in which the drive portion is formed from a diamond layer. Thus, because the drive portion has excellent mechanical strength and modulus of elasticity, the operational performance can be greatly improved as a micro mechanical component processed in a fine shape, from the conventional level. Further, because the drive portion exhibits excellent device characteristics under severe circumstances, the range of applications as a micro mechanical component can be widely expanded from the conventional range.
Abstract:
The invention provides a process for adjusting the coefficient of friction between a surface of a first solid object and a surface of a second solid object which surfaces are at least partly connected by means of a colloid, wherein the shear behaviour of the colloidis adjusted by subjecting at least part of the colloidto an electric and/or magnetic field.
Abstract:
The present invention is focused on a revolutionary, low-cost (highly-scaleable) approach for the mass production of three-dimensional microcomponents: the biological reproduction of naturally-derived, biocatalytically-derived, and/or genetically-tailored three-dimensional microtemplates (e.g., frustules of diatoms, microskeletons of radiolarians, shells of mollusks) with desired dimensional features, followed by reactive conversion of such microtemplates into microcomponents with desired compositions that differ from the starting microtemplate and with dimensional features that are similar to those of the starting microtemplate. Because the shapes of such microcomponents may be tailored through genetic engineering of the shapes of the microtemplates, such microcomposites are considered to be Genetically-Engineered Materials (GEMs).
Abstract:
Embodiments of the present disclosure are directed toward an apparatus with a rotatable MEMS device. The apparatus may include a magnetic circuit with two magnets disposed opposite each other to produce a magnetic field between the magnets. The MEMS device may be placed in a frame disposed between the magnets. The MEMS device may include a driving coil disposed around the device, and may be rotatable around a first axis of the frame, in response to application of electromagnetic force produced by interaction of electric current to pass through the driving coil, with the magnetic field. The frame may include another driving coil, and may be rotatable around a second axis orthogonal to first axis, in response to application of electromagnetic force produced by interaction of electric current to pass through the second driving coil, with the magnetic field. Other embodiments may be described and/or claimed.
Abstract:
The present invention is focused on a revolutionary, low-cost (highly-scaleable) approach for the mass production of three-dimensional microcomponents: the biological reproduction of naturally-derived, biocatalytically-derived, and/or genetically-tailored three-dimensional microtemplates (e.g., frustules of diatoms, microskeletons of radiolarians, shells of mollusks) with desired dimensional features, followed by reactive conversion of such microtemplates into microcomponents with desired compositions that differ from the starting microtemplate and with dimensional features that are similar to those of the starting microtemplate. Because the shapes of such microcomponents may be tailored through genetic engineering of the shapes of the microtemplates, such microcomposites are considered to be Genetically-Engineered Materials (GEMs).
Abstract:
The invention relates to a flat coil and to a lithographic method for producing microcomponents with metal component structures in the sub-millimeter range. According to the inventive method, a resist material is structured by means of selective exposition and removing the unexposed zones and filling in the gaps between the resist structures with metal by means of a galvanic method to produce the metal component structures. The aim of the invention is to improve such a method so that the microcomponents can be subdivided during said process. To this end, a structured three-dimensional sacrificial metal layer is produced during the production of the microcomponent, said sacrificial layer delimiting the microcomponent and being removed once the microcomponent is due to be subdivided. The invention also relates to a method for producing microcomponents with component structures of cross-linkable resist material and to a flat coil for micromotors with at least one coil layer with strip conductors in the sub-millimeter range.