Abstract:
An encapsulated MEMS device and a method for manufacturing the MEMS device are provided. The method comprises providing a cavity structure having an inner volume comprising a plurality of MEMS elements, which are relatively displaceable with respect to each other, and having an opening structure to the inner volume, depositing a Self-Assembled Monolayer (SAM) through the opening structure onto exposed surfaces within the inner volume of the cavity structure, and closing the cavity structure by applying a layer structure on the opening structure for providing a hermetically closed cavity.
Abstract:
Methods and apparatus for subtractively fabricating three-dimensional structures relative to a surface of a substrate and for additively depositing metal and dopant atoms onto the surface and for diffusing them into the bulk. A chemical solution is applied to the surface of the semiconductor substrate, and a spatial pattern of electron-hole pairs is generated by projecting a spatial pattern of illumination characterized by a specified intensity, wavelength and duration at each pixel of a plurality of pixels on the surface. Charge carriers are driven away from the surface of the semiconductor on a timescale short compared to the carrier recombination lifetime. Such methods are applied to creating a spatially varying doping profile in the semiconductor substrate, a photonic integrated circuit and an integrated photonic microfluidic circuit.
Abstract:
Quantum-size-controlled photoelectrochemical (QSC-PEC) etching provides a new route to the precision fabrication of epitaxial semiconductor nanostructures in the sub-10-nm size regime. For example, quantum dots (QDs) can be QSC-PEC-etched from epitaxial InGaN thin films using narrowband laser photoexcitation, and the QD sizes (and hence bandgaps and photoluminescence wavelengths) are determined by the photoexcitation wavelength.
Abstract:
The invention is directed to methods for direct patterning of silicon. The invention provides the ability to fabricate complex surfaces in silicon with three dimensional features of high resolution and complex detail. The invention is suitable, for example, for use in soft lithography as embodiments of the invention can quickly create a master for use in soft lithography. In an embodiment of the invention, electrochemical etching of silicon, such as a silicon wafer, for example, is conducted while at least a portion of the silicon surface is exposed to an optical pattern. The etching creates porous silicon in the substrate, and removal of the porous silicon layer leaves a three-dimensional structure correlating to the optical pattern.
Abstract:
A structure having projections is provided. The structure having projections comprises a first projection formed on a first layer containing a first material, and a plurality of second projections formed around the first projection and containing a material capable of being subjected to anodic oxidation.
Abstract:
A method for protecting a material of a microstructure comprising the material and a noble metal layer against undesired galvanic etching during manufacture, the method comprises forming on the structure a sacrificial metal layer having a lower redox potential than the material, the sacrificial metal layer being electrically connected to the noble metal layer.