Abstract:
In some embodiments, apparatus and systems, as well as methods, may operate to receive radiation at an active detector of a pair of radiation detectors to provide a first signal proportional to an intensity of the radiation, to receive none of the radiation at a blind detector of the pair of radiation detectors to provide a second signal proportional to the reception of no radiation, and to combine the first signal and the second signal to provide an output signal representing the difference between the first signal and the second signal. The pair of radiation detectors may comprise thermopile detectors. Combination may occur via differential amplification. Additional apparatus, systems, and methods are disclosed.
Abstract:
Die Erfindung schlägt eine Infrarot-Sensorvorrichtung (100;200;300) vor, aufweisendein Halbleitersubstrat (1), wenigstens ein im Halbleitersubstrat (1) mikromechanisch ausgebildetes Sensorelement (2), und wenigstens ein im Halbleitersubstrat (1) mikromechanisch ausgebildetes Kalibrierungselement (3) für das Sensorelement (2), wobei auf dem Halbleitersubstrat (1) im Bereich des Sensorelements (2) und des Kalibrierungselements (3) Absorbermaterial (6) angeordnet ist, wobei im Halbleitersubstrat (1) im Wesentlichen unterhalb des Sensorelements (2) und im Wesentlichen unterhalb des Kalibrierungselements (3) jeweils eine Kaverne (8) ausgebildet ist, wobei mittels der Kavernen (8) das Sensorelement (2) und das Kalibrierungselement (3) vom übrigen Halbleitersubstrat (1) thermisch und elektrisch getrennt sind. Dadurch wird für die Infrarot-Sensorvorrichtung eine hohe Sensitivität, eine Kalibrierungsfunktionalität für das Sensorelement und eine hohes Signal-Rauschverhältnis erreicht.
Abstract:
A semiconductor sensor system, in particular a bolometer, includes a substrate, an electrode supported by the substrate, an absorber spaced apart from the substrate, a voltage source, and a current source. The electrode can include a mirror, or the system may include a mirror separate from the electrode. Radiation absorption efficiency of the absorber is based on a minimum gap distance between the absorber and mirror. The current source applies a DC current across the absorber structure to produce a signal indicative of radiation absorbed by the absorber structure. The voltage source powers the electrode to produce a modulated electrostatic field acting on the absorber to modulate the minimum gap distance. The electrostatic field includes a DC component to adjust the absorption efficiency, and an AC component that cyclically drives the absorber to negatively interfere with noise in the signal.
Abstract:
Provided is a lightweight infrared sensor which is readily and stably erected to a substrate. The infrared sensor includes an insulating film; a first and a second heat sensitive element are disposed on one surface of the insulating film separately; a first and second conductive film on one surface of the insulating film and are respectively connected to the first and the second heat sensitive element; and an infrared reflection film on the other surface of the insulating film so as to face the second heat sensitive element. The infrared sensor further includes a reinforcing plate on which a sensor part window corresponding to a sensor part is formed and which is adhered to the insulating film; and a first and a second terminal electrode are respectively connected to the first and the second wiring film, are formed on the edge of the insulating film.
Abstract:
A semiconductor sensor system, in particular a bolometer, includes a substrate, an electrode supported by the substrate, an absorber spaced apart from the substrate, a voltage source, and a current source. The electrode can include a mirror, or the system may include a mirror separate from the electrode. Radiation absorption efficiency of the absorber is based on a minimum gap distance between the absorber and mirror. The current source applies a DC current across the absorber structure to produce a signal indicative of radiation absorbed by the absorber structure. The voltage source powers the electrode to produce a modulated electrostatic field acting on the absorber to modulate the minimum gap distance. The electrostatic field includes a DC component to adjust the absorption efficiency, and an AC component that cyclically drives the absorber to negatively interfere with noise in the signal.
Abstract:
A method of collecting radiation information of a turbine blade, the method including: 1) collecting a radiated light from the surface of the turbine blade, analyzing the radiated light using a spectrometer to calculate compositions and corresponding concentrations of combustion gas; 2) calculating an absorption coefficient of the combustion gas at different concentrations; 3) calculating a total absorption rate of the combustion gas at different radiation wavelengths under different concentrations of component gases; 4) obtaining a relationship between the radiation and a wavelength; 5) finding at least 3 bands with a least gas absorption rate; 6) calculating a distance between a wavelength of a strongest radiation point of the turbine blade and the center wavelength, and selecting three central wavelengths closest to the wavelength with the strongest radiation; and 7) acquiring radiation data of the turbine blade in the windows obtained in 6).
Abstract:
An infrared sensor assembly for sensing infrared radiation comprises infrared sensing elements and the infrared sensing compensation elements that are different so that, for a same flux on the infrared sensing elements and the infrared sensing compensation elements, the radiation responsive element of the infrared sensing elements absorbs more radiation than the radiation responsive element of the infrared sensing compensation elements, as to receive substantially more radiation than the radiation responsive element of the infrared sensing compensation elements. An output of the sensor array is a subtractive function of a sum of the signals of the plurality of infrared sensing elements and a sum of the signals of the plurality of the infrared sensing compensation elements such that at least linear and/or non-linear parasitic thermal fluxes are at least partly compensated for.
Abstract:
In a method for noncontact, radiation thermometric temperature measurement, a short-circuit photocurrent that is proportional to a received radiant power is produced in a photodiode radiation detector that is operating photovoltaically without bias voltage. The photocurrent is processed in a current to voltage converter. Subsequently, a temperature signal corresponding to the radiant power is generated. A corrective current, dependent on a temperature of the photodiode radiation detector, is added to the short-circuit photocurrent to compensate a fault current, wherein the fault current is based on an input bias current and an input offset voltage of the current to voltage converter across a temperature-dependent shunt resistance of the photodiode radiation detector. A device with a corrective current source controlled by a microcontroller is provided that can be used to perform the method.