COMPENSATED OPTICAL DETECTION APPARATUS, SYSTEMS, AND METHODS
    11.
    发明申请
    COMPENSATED OPTICAL DETECTION APPARATUS, SYSTEMS, AND METHODS 审中-公开
    补偿光学检测装置,系统和方法

    公开(公告)号:WO2011097382A1

    公开(公告)日:2011-08-11

    申请号:PCT/US2011/023607

    申请日:2011-02-03

    Abstract: In some embodiments, apparatus and systems, as well as methods, may operate to receive radiation at an active detector of a pair of radiation detectors to provide a first signal proportional to an intensity of the radiation, to receive none of the radiation at a blind detector of the pair of radiation detectors to provide a second signal proportional to the reception of no radiation, and to combine the first signal and the second signal to provide an output signal representing the difference between the first signal and the second signal. The pair of radiation detectors may comprise thermopile detectors. Combination may occur via differential amplification. Additional apparatus, systems, and methods are disclosed.

    Abstract translation: 在一些实施例中,装置和系统以及方法可以操作以在一对辐射检测器的有源检测器处接收辐射,以提供与辐射的强度成比例的第一信号,以在盲人处接收不到的辐射 检测器,以提供与无辐射的接收成比例的第二信号,以及组合第一信号和第二信号以提供表示第一信号和第二信号之间的差的输出信号。 该对辐射探测器可以包括热电堆检测器。 可以通过差分放大进行组合。 公开了附加装置,系统和方法。

    INFRAROT-SENSORVORRICHTUNG UND VERFAHREN ZUR HERSTELLUNG EINER INFRAROT-SENSORVORRICHTUNG
    12.
    发明申请
    INFRAROT-SENSORVORRICHTUNG UND VERFAHREN ZUR HERSTELLUNG EINER INFRAROT-SENSORVORRICHTUNG 审中-公开
    红外线传感器及其制造方法红外线传感器

    公开(公告)号:WO2013171020A1

    公开(公告)日:2013-11-21

    申请号:PCT/EP2013/058134

    申请日:2013-04-19

    Abstract: Die Erfindung schlägt eine Infrarot-Sensorvorrichtung (100;200;300) vor, aufweisendein Halbleitersubstrat (1), wenigstens ein im Halbleitersubstrat (1) mikromechanisch ausgebildetes Sensorelement (2), und wenigstens ein im Halbleitersubstrat (1) mikromechanisch ausgebildetes Kalibrierungselement (3) für das Sensorelement (2), wobei auf dem Halbleitersubstrat (1) im Bereich des Sensorelements (2) und des Kalibrierungselements (3) Absorbermaterial (6) angeordnet ist, wobei im Halbleitersubstrat (1) im Wesentlichen unterhalb des Sensorelements (2) und im Wesentlichen unterhalb des Kalibrierungselements (3) jeweils eine Kaverne (8) ausgebildet ist, wobei mittels der Kavernen (8) das Sensorelement (2) und das Kalibrierungselement (3) vom übrigen Halbleitersubstrat (1) thermisch und elektrisch getrennt sind. Dadurch wird für die Infrarot-Sensorvorrichtung eine hohe Sensitivität, eine Kalibrierungsfunktionalität für das Sensorelement und eine hohes Signal-Rauschverhältnis erreicht.

    Abstract translation: 本发明提出一种红外线传感器装置(100; 200; 300)之前comprisinga半导体衬底(1),至少一个在所述半导体衬底(1)微机械形成传感器元件(2),并且在半导体基板的至少一个(1)微机械形成校准元件(3) 用于传感器元件(2),其中所述半导体衬底(1)上的传感器元件(2)和校准元件的区域(3)的吸收材料(6)设置,其中,在所述半导体衬底(1)基本上是在传感器元件(2)下方,并在 在每种情况下基本上形成的校准元件(3)下方的空腔(8),其中,由所述腔体的装置(8),所述传感器元件(2)和从所述半导体衬底(1)的其余部分的校准元件(3)被热和电分离。 因此,高灵敏度,对于传感器元件的校准功能和高的信噪比为红外线传感器装置来实现。

    赤外線センサ
    13.
    发明申请
    赤外線センサ 审中-公开
    红外传感器

    公开(公告)号:WO2012132316A1

    公开(公告)日:2012-10-04

    申请号:PCT/JP2012/001916

    申请日:2012-03-21

    CPC classification number: G01J5/10 G01J5/0215 G01J5/20 G01J2005/067 H01L37/02

    Abstract: 軽量でかつ基板に立設させて十分な支持強度で取り付けることが容易な赤外線センサを提供する。絶縁性フィルム2と、該絶縁性フィルム2の一方の面に互いに離間させて設けられた第1の感熱素子3A及び第2の感熱素子3Bと、絶縁性フィルム2の一方の面に形成され第1の感熱素子3Aに接続された導電性の第1の配線膜4A及び第2の感熱素子3Bに接続された導電性の第2の配線膜4Bと、第2の感熱素子3Bに対向して絶縁性フィルム2の他方の面に設けられた赤外線反射膜6とを備え、センサ部に対応したセンサ部用窓部8aが形成されて絶縁性フィルムに貼り付けられた補強板8と、第1の配線膜および第2の配線膜に接続され絶縁性フィルムの端部に形成されコネクタに嵌め込み可能な第1の端子電極7Aおよび第2の端子電極7Bとを備えている。

    Abstract translation: 提供了一种重量轻的红外线传感器,以立式的方式设置在基板上,并且容易地以足够的支撑强度附着。 一种红外线传感器,具备:绝缘膜(2); 设置在所述绝缘膜(2)的一个表面上以彼此分离的第一热敏元件(3A)和第二热敏元件(3B); 形成在所述绝缘膜(2)的一个表面并连接到所述第一热敏元件(3A)的第一导电布线膜(4A); 连接到第二热敏元件(3B)的第二导电布线膜(4B); 以及设置在所述绝缘膜(2)的另一个表面上以与所述第二热敏元件(3B)相对的红外反射膜(6)。 所述红外线传感器还设置有:加强板(8),形成有与传感器部件对应的传感器部分窗口(8a),并附着在所述绝缘膜上; 并且分别连接到第一布线膜和第二布线膜的第一端子电极(7A)和第二端子电极(7B)形成在绝缘膜的边缘上,并且能够插入到连接器 。

    INFRARED SENSOR
    15.
    发明公开
    INFRARED SENSOR 审中-公开

    公开(公告)号:EP2693178A4

    公开(公告)日:2014-09-24

    申请号:EP12764040

    申请日:2012-03-21

    CPC classification number: G01J5/10 G01J5/0215 G01J5/20 G01J2005/067 H01L37/02

    Abstract: Provided is a lightweight infrared sensor which is readily and stably erected to a substrate. The infrared sensor includes an insulating film; a first and a second heat sensitive element are disposed on one surface of the insulating film separately; a first and second conductive film on one surface of the insulating film and are respectively connected to the first and the second heat sensitive element; and an infrared reflection film on the other surface of the insulating film so as to face the second heat sensitive element. The infrared sensor further includes a reinforcing plate on which a sensor part window corresponding to a sensor part is formed and which is adhered to the insulating film; and a first and a second terminal electrode are respectively connected to the first and the second wiring film, are formed on the edge of the insulating film.

    METHOD TO MODULATE THE SENSITIVITY OF A BOLOMETER VIA NEGATIVE INTERFERENCE
    16.
    发明公开
    METHOD TO MODULATE THE SENSITIVITY OF A BOLOMETER VIA NEGATIVE INTERFERENCE 审中-公开
    通过负面干扰调节手枪灵敏度的方法

    公开(公告)号:EP3204742A1

    公开(公告)日:2017-08-16

    申请号:EP15848474.1

    申请日:2015-10-09

    Abstract: A semiconductor sensor system, in particular a bolometer, includes a substrate, an electrode supported by the substrate, an absorber spaced apart from the substrate, a voltage source, and a current source. The electrode can include a mirror, or the system may include a mirror separate from the electrode. Radiation absorption efficiency of the absorber is based on a minimum gap distance between the absorber and mirror. The current source applies a DC current across the absorber structure to produce a signal indicative of radiation absorbed by the absorber structure. The voltage source powers the electrode to produce a modulated electrostatic field acting on the absorber to modulate the minimum gap distance. The electrostatic field includes a DC component to adjust the absorption efficiency, and an AC component that cyclically drives the absorber to negatively interfere with noise in the signal.

    Abstract translation: 半导体传感器系统,特别是辐射热测量计,包括衬底,由衬底支撑的电极,与衬底隔开的吸收器,电压源和电流源。 电极可以包括镜子,或者该系统可以包括与电极分离的镜子。 吸收体的辐射吸收效率基于吸收体和反射镜之间的最小间隙距离。 电流源在吸收器结构上施加DC电流以产生指示吸收器结构吸收的辐射的信号。 电压源为电极供电以产生作用在吸收器上的调制静电场以调节最小间隙距离。 静电场包括调整吸收效率的直流分量和循环驱动吸收器的交流分量,以消极地干扰信号中的噪声。

    INFRARED SENSING DEVICES AND METHODS
    19.
    发明申请

    公开(公告)号:US20180283956A1

    公开(公告)日:2018-10-04

    申请号:US15997836

    申请日:2018-06-05

    Abstract: An infrared sensor assembly for sensing infrared radiation comprises infrared sensing elements and the infrared sensing compensation elements that are different so that, for a same flux on the infrared sensing elements and the infrared sensing compensation elements, the radiation responsive element of the infrared sensing elements absorbs more radiation than the radiation responsive element of the infrared sensing compensation elements, as to receive substantially more radiation than the radiation responsive element of the infrared sensing compensation elements. An output of the sensor array is a subtractive function of a sum of the signals of the plurality of infrared sensing elements and a sum of the signals of the plurality of the infrared sensing compensation elements such that at least linear and/or non-linear parasitic thermal fluxes are at least partly compensated for.

    Method for Noncontact, Radiation Thermometric Temperature Measurement

    公开(公告)号:US20170314996A1

    公开(公告)日:2017-11-02

    申请号:US15584072

    申请日:2017-05-02

    Inventor: Uwe-Peter Arlt

    Abstract: In a method for noncontact, radiation thermometric temperature measurement, a short-circuit photocurrent that is proportional to a received radiant power is produced in a photodiode radiation detector that is operating photovoltaically without bias voltage. The photocurrent is processed in a current to voltage converter. Subsequently, a temperature signal corresponding to the radiant power is generated. A corrective current, dependent on a temperature of the photodiode radiation detector, is added to the short-circuit photocurrent to compensate a fault current, wherein the fault current is based on an input bias current and an input offset voltage of the current to voltage converter across a temperature-dependent shunt resistance of the photodiode radiation detector. A device with a corrective current source controlled by a microcontroller is provided that can be used to perform the method.

Patent Agency Ranking