Abstract:
The present invention generally relates to methods and systems for narrowing a wavelength emission of light. In certain aspects, methods of the invention involve transmitting light through a filter and passing a portion of the filtered light through a gain chip assembly at least two times before that portion of light passes again through the filter.
Abstract:
A closed loop optical fiber interferometer is used in sensing a quantity, Q, by applying a time varying or modulated measure of, Q, asymmetrically to the closed loop (72) and detecting phase shift between two counterpropagating optical signals in the closed loop. The closed loop (72) can be used as the sensing element or a separate transducer (70) can develop a time varying signal which is then applied to the closed loop interferometer.
Abstract:
L'invention concerne un procédé de fabrication d'une bobine (10) de fibre optique comprenant les étapes suivantes : a. Enroulement symétrique d'une fibre optique autour d'un axe (11), l'enroulement formant un motif comprenant un même nombre N de couches de chaque moitié de la fibre optique, une couche comprenant un ensemble de spires de fibre optique et des espaces (19, 29, 39, 49) entre spires adjacentes, l'enroulement formant un arrangement sectorisé comprenant, d'une part, une zone d'empilement régulier (13) comprenant au moins une surface d'étanchéité (14, 24, 34) continue entre deux couches de spires adjacentes et, d'autre part, une zone de chevauchement (12) où se croisent des portions de fibre optique reliant différentes spires; b. Infiltration d'une colle (22) à travers une surface externe de la zone de chevauchement (12) de manière à ce que la colle (12) s'infiltre jusque dans les espaces (19, 29, 39, 49) situés entre spires adjacentes dans la zone d'empilement régulier (13).
Abstract:
An interferometric measurement scheme utilizing squeezed light wherein an input pulse is split (14) into two consecutive input pulses (15a, 15b) separated by a time interval that is less than the inverse spectral width of GAWBS. The two pulses are further split (16) into first (20a, 20b) and second (22a, 22b) pairs of pulses and are caused to propagate in opposite directions through a fiber optic interferometer loop (18) and are recombined upon exiting the loop (16). The recombined pulses are caused to pass through a (pi) phase modulator (38) which modulates one of the two pulses. The output is then introduced to a balanced detector (50) where the detected signal of the two is averaged such that GAWBS noise is cancelled.
Abstract:
A point diffraction interferometric wavefront aberration measuring device comprising an optical source, an optical splitter, a first light intensity and polarization regulator, a phase shifter, a second light intensity and polarization regulator, an ideal wavefront generator, an object precision adjusting stage, a measured optical system, an image wavefront detection unit, an image precision adjusting stage, and a data processing unit. The center distance between the first output port and the second output port of the ideal wavefront generator is smaller than the diameter of the isoplanatic region of the measured optical system and is greater than the ratio of the diameter of the image point dispersion speckle of the measured optical system over the amplification factor thereof. A method for detecting wavefront aberration of the optical system is also provided by using the device.