Abstract:
A system to generate multiple beam lines in an oblique angle multi-beam spot scanning wafer inspection system includes a beam scanning device configured to scan a beam of illumination, an objective lens oriented at an oblique angle relative to the surface of a sample and with an optical axis perpendicular to a first scanning direction on the sample, and one or more optical elements positioned between the objective lens and the beam scanning device. The one or more optical elements split the beam into two or more offset beams such that the two or more offset beams are separated in a least a second direction perpendicular to the first direction. The one or more optical elements further modify the phase characteristics of the two or more offset beams such that the two or more offset beams are simultaneously in focus on the sample during a scan.
Abstract:
A laser scattering defect inspection system includes: a stage unit that rotates a workpiece W and transports the workpiece W in one direction; a laser light source that emits a laser beam LB toward the workpiece W mounted on the stage unit; an optical deflector that scans the laser beam LB emitted from the laser light source on the workpiece W; an optical detector that detects the laser beam LB scattered from the surface of the workpiece W; a storage unit that stores defect inspection conditions for each inspection step of a manufacturing process of the workpiece W, where the conditions include the rotation speed and the moving speed of the workpiece W by the stage unit, the scan width on the workpiece W and the scan frequency by the optical deflector; and a control unit that reads the defect inspection conditions stored for each inspection step in the storage unit and controls the driving of the stage unit and the optical deflector under the conditions.
Abstract:
A system and method for inspecting an object. The system includes: a traveling lens acousto-optic device adapted to generate a traveling lens that propagates through an active region of the traveling lens acousto-optic device; a first scanner, adapted to direct a beam of light towards the traveling lens while the traveling lens propagates; a first beam splitter, adapted to receive a beam formed by the traveling lens; and to split the scanned beam to multiple illuminating light beams; multiple detectors; and an objective lens; adapted to receive the multiple illuminating light beams, direct the multiple illuminating light beams towards multiple areas of the object, receive multiple collected light beams from the multiple areas of the object, and direct the multiple collected light beams towards the multiple detectors; wherein each detector is associated with an area of the multiple areas.
Abstract:
A spot scanning imaging system with run-time alignment includes a beam scanning device configured to linearly scan a focused beam of illumination across a sample, one or more detectors positioned to receive light from the sample, and a controller communicatively coupled to the beam scanning apparatus, the sample stage, and the one or more detectors. The controller is configured to store a first image, transmit a set of drive signals to at least one of the beam scanning device, the sample stage, or the one or more detectors, compare at least a portion of the second sampling grid to at least a portion of the first sampling grid to determine one or more offset errors, and adjust at least one drive signal in the set of drive signals based on the one or more offset errors such that the second sample grid overlaps the first sample grid.
Abstract:
Provided are a photoacoustic apparatus and method of operating the same. The photoacoustic apparatus includes: a laser module that generates laser light and transmits a laser state signal indicating a state of a laser module; a probe including an optical output unit for irradiating laser light generated by the laser module onto an object and a scanner for detecting a photoacoustic signal that is generated from the object; a scanner controller for controlling a position of the scanner; a sequence controller for controlling acquisition of the photoacoustic signal based on the laser state signal; a signal receiver that is controlled by the sequence controller to acquire the photoacoustic signal; and a photoacoustic image generator for generating a photoacoustic image based on the photoacoustic signal. The laser state signal includes a lasing ready state signal and a laser exposure state signal.
Abstract:
An optical reticle substrate inspection apparatus is provided with a laser, a first acoustooptical element which scans a laser beam output from the laser, an a second acoustooptical element which generates a virtual image with a concave lens effect to the laser beam output from the first acoustooptical element. The optical reticle substrate inspection apparatus is further provided with a concave lens arranged on the output side of the laser beam of the second acoustooptical element and an optical system which images the virtual image on a reticle substrate being an object to be inspected. The concave lens magnifies the laser beam in a perpendicular direction to the scanning direction by the first acoustooptical element.
Abstract:
An optical reticle substrate inspection apparatus is provided with a laser, a first acoustooptical element which scans a laser beam output from the laser, and a second acoustooptical element which generates a virtual image with a concave lens effect to the laser beam output from the first acoustooptical element. The optical reticle substrate inspection apparatus is further provided with a concave lens arranged on the output side of the laser beam of the second acoustooptical element and an optical system which images the virtual image on a reticle substrate being an object to be inspected. The concave lens magnifies the laser beam in a perpendicular direction to the scanning direction by the first acoustooptical element.
Abstract:
An automated photomask inspection apparatus including an XY state (12) for transporting a substrate (14) under test in a serpentine path in an XY plane, an optical system (16) comprising a laser (30), a transmission light detector (34), a reflected light detector (36), optical elements defining reference beam paths and illuminating beam paths between the laser, the substrate and the detectors and an acousto-optical beam scanner (40, 42) for reciprocatingly scanning the illuminating and reference beams relative to the substrate surface, and an electronic control, analysis and display system for controlling the operation of the stage and optical system and for interpreting and storing the signals output by the detectors. The apparatus can operate in a die-to-die comparison mode or a die-to-database mode.
Abstract:
The object of the invention relates to a method for scanning with an optical beam (50) using a first acousto-optic deflector (15, 15′) having an optical axis along a Z-axis and at least one acousto-optic crystal layer (14), involving directing the optical beam (50) in the first acousto-optic deflector (15, 15′), and deflecting the optical beam (50) along an X-axis perpendicular to the Z-axis by means of the first acousto-optic deflector (15, 15), during which generating a plurality of acoustic chirp signals (30) in the at least one acousto-optic crystal layer (14) of the acousto-optic deflector (15, 15′) by—generating a first acoustic chirp signal (30a) having a duration of τ in the acousto-optic crystal layer (14), then—generating a second acoustic chirp signal (30b) in the acousto-optic crystal layer (14) within a τ period of time counted from the start of the generation of the first acoustic chirp signal (30a).