Abstract:
An apparatus for suppression of arcs in an electron beam generator including: a first module providing an operating voltage; a second module including a coil suitable for a voltage of at least 10 kV, and at least one free-wheeling diode connected in parallel to the coil; a third module including a first circuit component configured to detect a first actual value for electric voltage, and a first signal is producible when the first actual value falls below a first threshold value, a second circuit component by which a second actual value for electric current is detectable, and a second signal is generated when the second actual value exceeds a second threshold value, a control logic, which optionally links the first and second signals and a resultant output signal is producible; a semiconductor-based switch suitable for the voltage of at least 10 kV, which is opened based on the output signal.
Abstract:
A method for performing milling and imaging in a focused ion beam (FIB) system employing an inductively-coupled plasma ion source, wherein two sets of FIB system operating parameters are utilized: a first set representing optimized parameters for operating the FIB system in a milling mode, and a second set representing optimized parameters for operating in an imaging mode. These operating parameters may comprise the gas pressure in the ICP source, the RF power to the ICP source, the ion extraction voltage, and in some embodiments, various parameters within the FIB system ion column, including lens voltages and the beam-defining aperture diameter. An optimized milling process provides a maximum milling rate for bulk (low spatial resolution) rapid material removal from the surface of a substrate. An optimized imaging process provides minimized material removal and higher spatial resolutions for improved imaging of the substrate area being milled.
Abstract:
A plasma electron flood system, comprising a housing configured to contain a gas, and comprising an elongated extraction slit, and a cathode and a plurality of anodes residing therein and wherein the elongated extraction slit is in direct communication with an ion implanter, wherein the cathode emits electrons that are drawn to the plurality of anodes through a potential difference therebetween, wherein the electrons are released through the elongated extraction slit as an electron band for use in neutralizing a ribbon ion beam traveling within the ion implanter.
Abstract:
A high density plasma generated by microwave injection using a windowless electrodeless rectangular slotted antenna waveguide plasma source has been demonstrated. Plasma probe measurements indicate that the source could be applicable for low power ion thruster applications, ion implantation, and related applications. This slotted antenna plasma source invention operates on the principle of electron cyclotron resonance (ECR). It employs no window and it is completely electrodeless and therefore its operation lifetime is long, being limited only by either the microwave generator itself or charged particle extraction grids if used. The high density plasma source can also be used to extract an electron beam that can be used as a plasma cathode neutralizer for ion source beam neutralization applications.
Abstract:
According to one embodiment, an electron source includes a base body and a first cathode layer. The first cathode layer includes a first diamond layer including a plurality of first polycrystalline diamonds, and a first member including a first element. At least a part of the first diamond layer is located between the base body and the first member. The first element includes at least one selected from the group consisting of Pd, Ni, Co, W, Mo, Ir and Ru.
Abstract:
In one embodiment, a system for patterning a substrate includes a plasma chamber; a power source to generate a plasma within the plasma chamber; and an extraction plate system comprising a plurality of apertures and disposed along a side of the plasma chamber. The extraction plate system is configured to receive an extraction voltage that biases the extraction plate system with respect to the plasma chamber wherein the plurality of apertures are configured to extract a plurality of respective charged particle beamlets from the plasma. The system further includes a projection optics system to direct at least one of the plurality of charged particle beamlets to the substrate.
Abstract:
In one embodiment, a system for patterning a substrate includes a plasma chamber; a power source to generate a plasma within the plasma chamber; and an extraction plate system comprising a plurality of apertures and disposed along a side of the plasma chamber. The extraction plate system is configured to receive an extraction voltage that biases the extraction plate system with respect to the plasma chamber wherein the plurality of apertures are configured to extract a plurality of respective charged particle beamlets from the plasma. The system further includes a projection optics system to direct at least one of the plurality of charged particle beamlets to the substrate.
Abstract:
A plasma reactor that generates plasma in a workplace processing chamber by an electron beam, has an electron beam source chamber with a wall opposite to the electron beam propagation direction, the wall being profiled to compensate for a non-uniformity in electron beam density distribution.
Abstract:
The proposed invention relates to electronic technology, more specifically to gas-discharge electron guns for processing applications and can be used for electron beam melting of materials, in particular metals and substances, which melts have metallic properties (hereinafter referred to as metals), their vacuum purification and other thermal processes performed in a vacuum using high-power electron beams. The goal of the proposed invention is to solve the task of improving the stability of electron-beam guns due to stabilisation of pressure in the gas-discharge volume and reducing the deposition of processed material's vapours onto the gun's elements. The set objective is achieved due to the fact that the gas-ballast chamber reducing the pressure fluctuations in the process chamber affecting pressure in the gas-discharge volume of the electron beam gun is installed between the focusing lenses into the beam guide connecting the anode aperture with the process chamber.
Abstract:
A method for performing milling and imaging in a focused ion beam (FIB) system (10) employing an inductively-coupled plasma ion source (100), wherein two sets of FIB system operating parameters are utilized: a first set representing optimized parameters for operating the FIB system in a milling mode, and a second set representing optimized parameters for operating in an imaging mode. These operating parameters may comprise the gas pressure in the ICP source, the RF power to the ICP source, the ion extraction voltage, and in some embodiments, various parameters within the FIB system ion column, including lens voltages and the beam-defining aperture (305) diameter. An optimized milling process provides a maximum milling rate for bulk (low spatial resolution) rapid material removal from the surface of a substrate. An optimized imaging process provides minimized material removal and higher spatial resolutions for improved imaging of the substrate area being milled.