Abstract:
A method is provided for making a micro-switching element. The switching element includes a substrate, two supporting members fixed to the substrate, and a movable beam bridging between the supporting members. The beam includes a membrane, a movable contact electrode and a movable driving electrode, both disposed on the membrane. The switching element also includes a pair of stationary contact electrodes facing the movable contact electrode, and a stationary driving electrode cooperating with the movable driving electrode for generation of electrostatic force. The method includes the steps of making a sacrifice layer on the substrate, making the membrane on the sacrifice layer, and subjecting the sacrifice layer to etching with the membrane intervening, so that the supporting members are formed as remaining portions of the sacrifice layer between the substrate and the membrane.
Abstract:
A phased-array antenna system and other types of radio frequency (RF) devices and systems using microelectromechanical switches (“MEMS”) and low-temperature co-fired ceramic (“LTCC”) technology and a method of fabricating such phased-array antenna system and other types of radio frequency (RF) devices are disclosed. Each antenna or other type of device includes at least two multilayer ceramic modules and a MEMS device fabricated on one of the modules. Once fabrication of the MEMS device is completed, the two ceramic modules are bonded together, hermetically sealing the MEMS device, as well as allowing electrical connections between all device layers. The bottom ceramic module has also cavities at the backside for mounting integrated circuits. The internal layers are formed using conducting, resistive and high-k dielectric pastes available in standard LTCC fabrication and low-loss dielectric LTCC tape materials.
Abstract:
The invention involves a microsystem which can be used in particular for making microswitches or microvalves, composed of a substrate (50) and used for shifting between a first state of functioning and a second state of functioning by means of a bimetal-effect thermal sensor. The sensor includes a deformable element (51) attached, at opposite ends, to the substrate (50) so that there is a natural deflection without stress with respect to a surface of the substrate opposite it, this natural deflection determining the first state of functioning, the second state of functioning being caused by the thermal sensor which, under the influence of temperature variation, induces a deformation of the deformable element (51) which diminishes the deflection by subjecting it to a compressive force which shifts it in a direction opposite to its natural deflection by buckling.
Abstract:
A switch, comprising a movable part supported at both ends and a contact installed on the movable part, the movable part characterized by further comprising a first bimetal for displacing the contact in a specified direction according to a temperature and a second bimetal for displacing the contact in the direction opposite to the specified direction according to the temperature.
Abstract:
A micromechanical switch includes a substrate, at least one pair of support members fixed to the substrate, and at least one pair of beam members placed in proximity and parallel to each other above the substrate, and connected to one of the support members, respectively, each of the beam members having a moving portion which is movable with a gap with respect to the substrate. A contact portion is provided on the moving portion, and a driving electrode is placed on the substrate between the pair of beam members to attract the moving portions of the beam members in a direction in a plane substantially parallel to the substrate with an electrostatic force so that the contact portions of the bean members which are opposed to each other are short-circuited.
Abstract:
기판(14)상에 베이스층(10) 및 기계적 층(12)을 제공하고, 베이스층(10)과 기계적 층(12) 사이에 희생층(16)을 제공하고, 희생층(16)과 기판(14) 사이에 에칭 정지층(18)을 제공하고, 건식 화학 에칭에 의해 희생층(16)을 제거하는 것을 포함하되, 건식 화학 에칭은 플루오르 함유 플라즈마를 이용하여 수행되고, 에칭 정지층(18)은 HfO 2 , ZrO 2 , Al 2 O 3 또는 TiO 2 와 같은 실질적으로 비도전성의 플루오르 화학작용 비활성 물질을 포함하는, MEMS(micro-electromechanical systems) 장치를 제조하는 방법이 제공된다.
Abstract:
A MEMS device is electrically actuated with a voltage placed across a first electrode (702) and a moveable material (714). The device may be maintained in an actuated state by latch electrodes (730a, 730b) that are separate from the first electrode.
Abstract:
MEMS 스위치의 구조적인 문제점으로 인해 발생되는 열적 변형과 스틱션 문제를 해결할 수 있는 정전기력으로 구동되는 MEMS 스위치 및 그 스위치 제조방법을 제공한다. 그 MEMS 스위치는 트렌치, 접지라인 및 일정 부분의 개방부를 갖는 신호라인이 형성된 기판; 전극판 및 개방부를 연결할 수 있는 접촉수단을 구비하고 기판과 일정 간격 이격되어 있으며 트렌치에 삽입될 수 있는 깊은 주름이 형성된 이동판부; 및 이동판부를 지지하는 지지부;를 포함한다. 미세전자기계적 스위치, 신호라인, 깊은 주름, 스위칭 전극 라인
Abstract:
본 발명은 마이크로 스위칭 소자를 양호한 제조 수율로 제조하는 것을 과제로 한다. 본 발명은 기판(S1)과, 서로 격리되어 기판(S1)에 고정된 한 쌍의 지지부(20)와, 한 쌍의 지지부(20)를 가교하는 막체(31), 상기 막체(31) 위에 배치된 가동 콘택트 전극(32) 및 가동 구동 전극(33)을 갖는 가동 빔부(30)와, 가동 콘택트 전극(32)에 대향하는 한 쌍의 고정 콘택트 전극(11)과, 가동 구동 전극(33)과 협동하여 정전기력을 발생시키기 위한 고정 구동 전극(12)을 구비하는 마이크로 스위칭 소자를 제조하기 위한 방법이며, 기판(S1) 위에 희생층을 형성하기 위한 공정과, 희생층 위에 막체(31)를 형성하기 위한 공정과, 서로 격리되어 기판(S1) 및 막체(31) 사이에 개재되는 한 쌍의 지지부(20)가 잔존 형성되도록 희생층에 대하여 막체(31)를 통하여 에칭 처리를 실시하기 위한 공정을 포함한다. 마이크로 스위칭 소자, 고정 구동 전극, 전극 패드, 범프