Abstract:
A method of manufacturing an external force detection sensor in which a sensor element is formed by through-hole (20) dry etching of an element substrate (3), and an electrically conductive material is used as an etching stop layer (18) during the dry etching.
Abstract:
A method is described for forming three-dimensional micro and nanostructures, based on the structuring of a body of material by means of a mould having an impression area which reproduces the said three-dimensional structure in negative form, characterized in that it comprises the operations of: - providing a mould comprising a substrate of a material which can undergo isotropic chemical etching, in which the said impression area is to be formed; defining an etching pattern on (in) the substrate, comprising a plurality of etching areas having zero-, uni- or bidimensional extension, which can be reached by an etching agent; and - carrying out a process of isotropic chemical etching of the substrate from the said etching areas for a corresponding predetermined time, so as to produce cavities which in combination make up the aforesaid impression area. This method is advantageously used in the fabrication of sets of microlenses with a convex three-dimensional structure, of the refractive or hybrid refractive/diffractive type, for forming images on different focal planes.
Abstract:
A method of etching a sacrificial oxide layer covering an etch-stop silicon nitride underlayer, involves exposing the sacrificial oxide to anhydrous HF at a temperature of less than about 100°C and/or at vacuum level lower than 40 Torr; and subsequently performing an in-situ vacuum evaporation of etch by-products at a temperature of more than about 100°C and at vacuum level lower than the 40 Torr without exposure to ambient air.
Abstract:
The invention relates to a method for the anisotropic etching of structures on a semiconductor body, in particular for etching recesses in a silicon body (18) which are defined laterally in a precise manner by an etching mask, using a plasma (28). An ion-accelerator voltage is applied to the semiconductor, at least during an etching step which continues for a predetermined period. Said ion-accelerator voltage is induced, in particular, by a high-frequency alternating current. The duration of the etching step is subdivided further into at least two etching periods, between which the applied ion-accelerator voltage is modified. A preferred embodiment contains two etching periods, whereby a higher accelerator voltage is used during the first etching period than during the second etching period. The duration of the first etching period can also be determined dynamically or statically during the etching steps using a device for detecting a polymer breakthrough. In addition, high frequency pulses or pulse packets with an adjustable pulse-pause ratio are preferably used to generate and adjust the level of the accelerator voltage.
Abstract:
The present invention relates to a method for the production of very small trenches in semiconductor devices. The formation of these small trenches is based on chemically changing the properties of a first dielectric layer locally, such that the side walls of a patterned hole in said first dielectric layer are converted locally and become etchable by a first etching substance. Subsequently a second dielectric material is deposited in the patterned structure and the damaged part of the first dielectric material is removed such that small trenches are obtained. The small trenches obtained by chemically changing the properties of a dielectric layer can be used as test vehicle to study barrier deposition, copper plating and seedlayer deposition within very small trenches (order 10-30 nm).
Abstract:
A method of etching a sacrificial oxide layer covering an etch-stop silicon nitride underlayer, involves exposing the sacrificial oxide to anhydrous HF at a temperature of less than about 100°C and/or at vacuum level lower than 40 Torr; and subsequently performing an in-situ vacuum evaporation of etch by-products at a temperature of more than about 100°C and at vacuum level lower than the 40 Torr without exposure to ambient air.
Abstract:
A method of manufacturing an external force detection sensor in which a sensor element is formed by through-hole (20) dry etching of an element substrate (3), and an electrically conductive material is used as an etching stop layer (18) during the dry etching.
Abstract:
This invention comprises a process for fabricating a MEMS microstructure in a sealed cavity wherein the etchant entry holes are created as a by-product of the fabrication process without an additional step to etch holes in the cap layer (20). The process involves extending the layers of sacrificial material (12, 16) past the horizontal boundaries of the cap layer (20). The cap layer (20) is supported by pillars (21) formed by a deposition in holes etched through the sacrificial layers (12,16), and the etchant entry holes are formed when the excess sacrificial material (12, 16) is etched away, leaving voids between the pillars (21) supporting the cap.
Abstract:
The invention relates to a method for producing an aperture (10) in a semiconductor material (12) comprising the following steps: Preparing a semiconductor wafer (14), for example, a (100)-oriented silicon wafer having an upper surface (16) and a lower surface (18); producing a cavity (20) with a side wall (22) in the upper surface (16) of the semiconductor wafer (14) by partially etching said upper surface (16), whereby the cavity (20) comprises a closed bottom area (24) which faces the lower surface (18) and which preferably has, in particular, a convex or, in particular, a concave corner or edge or a curvature of this type. After depositing an oxide layer (26) on the semiconductor material (12) at least in the area of the cavity (20) by oxidizing the semiconductor material (12), whereby the oxide layer (26) preferably comprises an inhomogeneity (28) in the bottom area (24), the semiconductor material (14) is selectively etched back on the lower surface (18) of the semiconductor wafer (14) until at least the oxide layer (26) located in the bottom area (24) is exposed. Afterwards, the exposed oxide layer (26) is etched until it is at least severed. In addition, the invention relates to an aperture (10) in a semiconductor material (12) especially produced according to the inventive method, and to different uses of such an aperture (10).