Abstract:
A glass fiber having a central core formed of material having a relatively high index of refraction and an outer casing formed of material having a relatively low index of refraction is formed with perfect contact between the core and casing by forming a coating of casing material on the core and permitting the coating to harden. The coating may be applied by immersing the core material in a bath of casing material, by drawing the core material vertically through a bath of the casing material, or by drawing the core material in a horizontal direction under a vertical column of casing material while twisting said core material.
Abstract:
Deuterium is used instead of hydrogen in a process for producing glass having low hydroxyl ion content. In a flame hydrolysis process deuterium gas, or a deuterium compound gas, is passed through a liquid containing a silicon compound such as silicon tetrachloride. The resulting vapor is burned to deposit a film of silicon dioxide on a rotating mandrel. Glass produced in this manner is particularly suitable for use as optical waveguides. The hydroxyl ion normally present in glass produced in the presence of hydrogen is replaced by the deuterium containing ion OD . Absorption peaks normally caused by the presence of the hydroxyl ions are shifted to longer wavelengths at which the absorptions are not troublesome when the waveguide is used to transmit light in the band of approximately 7,000A.
Abstract:
A glass composite for use in Extreme Ultra-Violet Lithography (EUVL) is provided. The glass composite includes a first silica-titania glass section. The glass composite further includes a second doped silica-titania glass section mechanically bonded to a surface of the first silica-titania glass section, wherein the second doped silica-titania glass section has a thickness of greater than about 1.0 inch.
Abstract:
Annealing treatments for modified titania-silica glasses and the glasses produced by the annealing treatments. The annealing treatments include an isothermal hold that facilitates equalization of non-uniformities in fictive temperature caused by non-uniformities in modifier concentration in the glasses. The annealing treatments may also include heating the glass to a higher temperature following the isothermal hold and holding the glass at that temperature for several hours. Glasses produced by the annealing treatments exhibit high spatial uniformity of CTE, CTE slope, and fictive temperature, including in the presence of a spatially non-uniform concentration of modifier.
Abstract:
Die vorliegende Erfindung betrifft ein Substrat für einen EUV-Spiegel, das einen von der statistischen Verteilung abweichenden Verlauf der Nulldurchgangstemperatur aufweist. Weiterhin betrifft die Erfindung ein Verfahren zur Herstellung eines Substrates für einen EUV-Spiegel und dessen Verwendung, wobei der Verlauf der Nulldurchgangstemperatur im Substrat der Betriebstemperatur des Spiegels angepasst ist sowie ein Lithographieverfahren unter Verwendung eines solchen Substrates.
Abstract:
Methods for forming optical fiber preforms are disclosed. According to one embodiment, a method for forming an optical fiber preform includes forming a preform core portion from silica-based glass soot. The silica-based glass soot may include at least one dopant species for altering an index of refraction of the preform core portion. A selective diffusion layer of silica-based glass soot may be formed around the preform core portion to form a soot preform. The selective diffusion layer may have an as-formed density greater than the density of the preform core portion. A diffusing species may be diffused through the selective diffusion layer into the preform core portion. The soot preform may be sintered such that the selective diffusion layer has a barrier density which is greater than the as-formed density and the selective diffusion layer prevents diffusion of the at least one dopant species through the selective diffusion layer.
Abstract:
The present disclosure is directed to a doped silica-titania glass, DST glass, consisting essentially of 0.1 wt.% to 5 wt.% halogen, 50 ppm-wt. to 6 wt.% of one or more oxides of Al, Ta and Nb, 3 wt.% to 10 wt.% TiO 2 and the remainder SiO 2 . In an embodiment the halogen content can be in the range of 0.2 wt.% to 3 wt.% along with 50 ppm-wt. to 6 wt.% one or more oxides of Al, Ta and Nb, 3 wt.% to 10 wt.% TiO 2 and the remainder SiO 2 . In an embodiment the DST glass has an OH concentration of less than 100 ppm. In another embodiment the OH concentration is less than 50 ppm. The DST glass has a Active temperature T f of less than 875°C. In an embodiment T f is less than 825°C. In another embodiment T f is less than 775°C.