Abstract:
Remotely sensing a target may include generating a first beam of optical radiation that is modulated at a first frequency and polarized at a first polarization. A second beam of optical radiation that is modulated at a second frequency and polarized at a second polarization may also be generated. The first and second beams of optical radiation may be transmitted to the target. Radiation at the first polarization and radiation at the second polarization may be detected from the target using a phase sensitive technique and the first and second frequencies.
Abstract:
Verfahrenund Anordnung zur einstellbaren Veränderung von Beleuchtungslicht und/oder Probenlicht bezüglich seiner spektralen Zusammensetzung und/oder Intensität, wobei mit ersten Polarisationsmitteln (Pol1) eine räumliche Trennung in Strahlungsanteile unterschiedlicher Polarisation erfolgt, mit ersten Dispersionsmittel (Disp1) eine spektrale räumliche Aufspaltung mindestens eines Strahlungsanteils vorgenommen wird, der Polarisationszustand mindestens eines Teils des spektral räumlich aufgespaltenenen Strahlungsanteils verändert wird und über zweite Polarisationsmittel (Pol2) eine räumlichen Trennung und/oder Zusammenführung von Strahlungsanteilen unterschiedlicher Polarisation vorgenommen wird, wobei vorteilhaft eine räumliche Zusammenführung von bezüglich ihres Polarisationszustandes veränderten und nicht veränderten Strahlungsanteilen durch zweite Dispersionsmittel (Disp2) erfolgt.
Abstract:
The present invention relates to a controlled interference polarization spectrometer for determining the concentration of a substance within a sample. The spectrometer includes first and second filters for filtering first and second portions of radiation transmitted by the sample. The filters having a number of pass bands at wavelengths corresponding to absorption peaks in the absorption spectrum of the substance to be detected, and are responsive to an applied signal to modulate the wavelengths of the pass bands in respective first and second directions. A detector detects the filtered radiation and determines the difference in the maximum and the minimum intensities of the radiation transmitted by the sample to thereby determine the concentration of the substance.
Abstract:
A system and method for controlling polarisation state determining parameters of a polarised beam of light in an ellipsometer or polarimeter and the like system, so that they are in ranges wherein the sensitivity, of a sample system characterising PSI and DELTA value monitoring detector (DET) used to measure changes in said polarisation state resulting from interaction with a "composite sample system," comprised of a sample system per se. (SS) and a beam polarisation state determining variable retarder, to noise and measurement errors etc. therein), is reduced. This allows determining sample system per se. characterising PSI and DELTA values, from Composite Sample System characterising PSI and DELTA values, by compensating for the presence of components, (VR1) and/or (VR2), added to an ellipsometer or polarimeter and the like system. The arrangement also improves the ability of an ellipsometer or polarimeter and the like system fitted with components (VR1) and/or (VR2) to provide usably accurate and precise sample system characterising PSI and DELTA determining data values, wherein a sample system per se. investigating polarised beam of light is oriented at other than a Principal or Brewster Angle of Incidence thereto, the use of which Angle of Incidence would otherwise be difficult, if not impossible. The arrangement also allows determination of the "Handedness" of a polarised beam of light, and of sample system Jones or Mueller Matrix component values; and provides means for making system components (VR1) and/or (VR2) added to an ellipsometer or polarimeter and the like system, essentially end user transparent when desired, without removal thereof from said ellipsometer or polarimeter and the like system.
Abstract:
A polarization interferometer comprises a light source (1), a collimator (2), a first polarization element (3), a system of double-refracting elements (4, 5, 6) and a second polarizing element (7) which polarizes the light emerging from the double-refracting element (4, 5, 6) and directs it to a photon detector (8). The double-refractive element (4, 5, 6) consists of two optical wedges (5, 6) which together constitute a right parallepiped and which are arranged so as to slide relative to each other along opposed side surfaces, and a double-refracting plate (4) with parallel faces which acts as a compensator. The optical axis of the compensator (4) makes a finite angle with those of the two wedges (5, 6) in the plane perpendicular to the light beam, the optical axes of both wedges (5, 6) being coincident. The optical axes of the two polarizers (3, 7) are mutually perpendicular or parallel and are not aligned parallel to the axes of the two wedges (5, 6) of the double-refractive element (4, 5, 6).
Abstract:
Das Polarisationsinterferometer weist eine Lichtquelle (1), einen Kollimator (2), ein erstes polarisierendes Element (3), ein System von doppelbrechenden Elementen (4,5,6) und ein zweites polarisierendes Element (7) auf, welches das aus dem doppelbrechenden Element (4,5,6) austretende Licht polarisiert und einem Photonendetektor (8) zuführt. Das doppelbrechende Element (4,5,6) besteht dabei aus zwei, längs entgegengesetzter Seitenflächen gegeneinander verschiebbar angeordneten, sich zu einem Quader ergänzenden, optischen Keile (5,6) und einer als Kompensator dienenden doppelbrechenden planparallelen Platte (4). Die optische Achse des Kompensators (4) ist gegenüber derjenigen der beiden Keile (5,6) in der Ebene senkrecht zum Lichtstrahl um einen endlichen Winkel verdreht, wobei die optischen Achsen der beiden Keile (5,6) übereinstimmen. Die optischen Achsen der beiden Polarisatoren (3,7) stehen senkrecht oder parallel zueinander und sind nicht parallel zu den Achsen der beiden Keile (5,6) des doppelbrechenden Elementes (4,5,6) ausgerichtet. Ein monochromatischer Lichtstrahl (9) wird in den von der Lichtquelle (1) erzeugten parallen Lichtstrahl eingekoppelt und nach Durchquerung mindestens des doppelbrechenden Elementes (4,5,6) wieder ausgekoppelt und auf einen Photonendetektor (13) geführt.
Abstract:
Un interféromètre polarisant comprend une source de lumière (1), un collimateur (2), un premier élément polarisant (3), un système d'éléments biréfringents (4, 5, 6) et un deuxième élément polarisant (7) qui polarise la lumière qui sort de l'élément biréfringent (4, 5, 6) et la transmet à un détecteur (8) de photons. L'élément biréfringent (4, 5, 6) comprend deux coins optiques (5, 6) mobiles l'un par rapport à l'autre le long de faces latérales opposées et qui forment ensemble un carré, ainsi qu'une plaque (4) biréfringente à faces planes et parallèles qui sert de compensateur. L'axe optique du compensateur (4) est décalé d'un angle fini par rapport à l'axe des deux coins (5, 6) sur le plan perpendiculaire au rayon de lumière, les axes optiques des deux coins (5, 6) coïncidant. Les axes optiques des deux polariseurs (3, 7) sont perpendiculaires ou parallèles l'un à l'autre et ne sont pas parallèles aux axes des deux coins (5, 6) de l'élément biréfringent (4, 5, 6).
Abstract:
An acousto-optic frequency shifter having a long interaction region is used as an optical analyzer. A variable frequency signal generator (340) is used to drive an acoustic transducer (316) to launch an acoustic wave in contact with an optical fiber (300). The acoustic frequency is varied over a known range to generate acoustic waves having known wavelengths. An optical signal having an unknown optical wavelength is introduced into one end (302) of the optical fiber (300) in a first polarization mode. The effect of the acoustic wave on the optical signal is to cause coupling of the optical signal from the first polarization mode to a second orthogonal polarization mode. The amount of the coupling is dependent upon the phase matching between the acoustic wavelength and the optical beat length. The coupling between the polarization modes is maximum when the acoustic wavelength is equal to the optical beat length. The intensity of the optical signal coupled to the second polarization mode can be measured to determine the optical wavelength corresponding to the acoustic wavelength when the maximum intensity occurs.