Abstract:
Disclosed is an aircraft, configured to have a wide range of flight speeds, consuming low levels of power for an extended period of time, while supporting a communications platform with an unobstructed downward-looking view. The aircraft includes an extendable slat at the leading edge of the wing, and a reflexed trailing edge. The aircraft comprises a flying wing extending laterally between two ends and a center point. The wing is swept and has a relatively constant chord. The aircraft also includes a power module configured to provide power via a fuel cell. The fuel cell stores liquid hydrogen as fuel, but uses gaseous hydrogen in the fuel cell. A fuel tank heater is used to control the boil-rate of the fuel in the fuel tank. The fuel cell compresses ambient air for an oxidizer, and operates with the fuel and oxidizer at pressures below one atmosphere. The aircraft of the invention includes a support structure including a plurality of supports, where the supports form a tetrahedron that affixes to the wing.
Abstract:
Disclosed is an aircraft, configured to have a wide range of flight speeds, consuming low levels of power for an extended period of time, while supporting a communications platform with an unobstructed downward-looking view. The aircraft includes an extendable slat at the leading edge of the wing, and a reflexed trailing edge. The aircraft comprises a flying wing extending laterally between two ends and a center point. The wing is swept and has a relatively constant chord. The aircraft also includes a power module configured to provide power via a fuel cell. The fuel cell stores liquid hydrogen as fuel, but uses gaseous hydrogen in the fuel cell. A fuel tank heater is used to control the boil-rate of the fuel in the fuel tank. The fuel cell compresses ambient air for an oxidizer, and operates with the fuel and oxidizer at pressures below one atmosphere. The aircraft of the invention includes a support structure including a plurality of supports, where the supports form a tetrahedron that affixes to the wing.
Abstract:
Disclosed is an aircraft, configured to have a wide range of flight speeds, consuming low levels of power for an extended period of time, while supporting a communications platform with an unobstructed downward-looking view. The aircraft includes an extendable slat at the leading edge of the wing, and a reflexed trailing edge. The aircraft comprises a flying wing extending laterally between two ends and a center point. The wing is swept and has a relatively constant chord. The aircraft also includes a power module configured to provide power via a fuel cell. The fuel cell stores liquid hydrogen as fuel, but uses gaseous hydrogen in the fuel cell. A fuel tank heater is used to control the boil-rate of the fuel in the fuel tank. The fuel cell compresses ambient air for an oxidizer, and operates with the fuel and oxidizer at pressures below one atmosphere. The aircraft of the invention includes a support structure including a plurality of supports, where the supports form a tetrahedron that affixes to the wing.
Abstract:
A modular unmanned aerial vehicle (UAV) having a fuselage, a nose cone, a left wing piece, a right wing piece, and a tail section. The tail section and nose cone each join to the fuselage through mating bulkhead structures that provide quick connection capability while being readily separated so as to enable the UAV to break apart at these connection points and thereby absorb or dissipate impact upon landing. The UAV is capable of rapid assembly in the field for two-man launch and data retrieval, as well as quick disassembly into these five component parts for transport and storage in a highly compact transport case that can be carried as a backpack.
Abstract:
The present invention relates to a system for retrieving data from remote difficult to reach terrain, such as wilderness areas, etc. and in particular to a system comprised of one or more surface based data collectors in communication with one or more wireless transceivers adapted to transmit the collected data to an unmanned aerial vehicle adapted to fly within a predetermined distance from the data collector and receive data collected therefrom. The present invention further relates to an unmanned aerial vehicle adapted to fly a flight pattern relative to a moveable surface object or for controlling the position of a moveable surface object relative to the flight path of the unmanned aerial vehicle. Finally, the present invention relates to an improved unmanned aerial vehicle having airframe structural elements with electrical circuits adhered to the surfaces of the structural elements.
Abstract:
A hollow elliptical-cylindrical hull conformingly houses a hollow rectangular-prismatic cabin whereby the four longitudinal parallel outside edges of the latter make contact with the inside surface of the former. The fully constructed aircraft (either non-powered or powered) includes the integral hull-plus-cabin structure along with nose, tail and airfoil structures that are coupled therewith. The cabin conformingly accommodates hollow rectangular-prismatic modules useful for cargo storage. While the nose and/or tail structure is uncoupled from the integral hull-plus-cabin structure, the modules are inserted into the cabin and the cabin is sealed. The aircraft is lifted (e.g., via airplane, helicopter, rocket or balloon) to a particular elevation and released, whereupon the two wings fully emerge and the aircraft effects controlled flight until reaching its destination. After landing, the nose and/or tail structure is uncoupled from the integral hull-plus-cabin structure, the cabin is unsealed, and the modules are removed from the cabin.
Abstract:
An aircraft 1 comprising interchangeable wings 5 detachedly connected to a fuselage 3, each wing 5 containing the fuel and flight systems 13,15 for engines 7 mounted to the wings 5, so that the fuselage 3 need contain no flight systems, simply a “bus” 23 for communication and the transfer of data between the wings.
Abstract:
A modular automated air transport system comprising an unmanned autonomous aircraft having a selectively detachable control systems portion and a structural air frame portion, wherein the structural air frame portion contains an interior cargo hold, aerodynamic members having control surfaces and at least one propulsion device attached to the structural air frame portion; and wherein the control system portion includes a control computer for autonomously controlling the flight of said air transport system from one known location to a second known location.
Abstract:
Disclosed is an aircraft, configured to have a wide range of flight speeds, consuming low levels of power for an extended period of time, while supporting a communications platform with an unobstructed downward-looking view. The aircraft includes an extendable slat at the leading edge of the wing, and a reflexed trailing edge. The aircraft comprises a flying wing extending laterally between two ends and a center point. The wing is swept and has a relatively constant chord. The aircraft also includes a power module configured to provide power via a fuel cell. The fuel cell stores liquid hydrogen as fuel, but uses gaseous hydrogen in the fuel cell. A fuel tank heater is used to control the boil-rate of the fuel in the fuel tank. The fuel cell compresses ambient air for an oxidizer, and operates with the fuel and oxidizer at pressures below one atmosphere. The aircraft of the invention includes a support structure including a plurality of supports, where the supports form a tetrahedron that affixes to the wing.
Abstract:
Disclosed is an aircraft, configured to have a wide range of flight speeds, consuming low levels of power for an extended period of time, while supporting a communications platform with an unobstructed downward-looking view. The aircraft includes an extendable slat at the leading edge of the wing, and a reflexed trailing edge. The aircraft comprises a flying wing extending laterally between two ends and a center point. The wing is swept and has a relatively constant chord. The aircraft also includes a power module configured to provide power via a fuel cell. The fuel cell stores liquid hydrogen as fuel, but uses gaseous hydrogen in the fuel cell. A fuel tank heater is used to control the boil-rate of the fuel in the fuel tank. The aircraft of the invention includes a support structure including a plurality of supports, where the supports form a tetrahedron that affixes to the wing.